Here we have a binomial distribution:
P(x)=(n−x)!x!n!pxqn−x
where n=8,p=1/5(20%),q=1−p=4/5
So,
(a) P(2)=(8−2)!2!8!(51)2(54)8−2=1.12∗0.26=0.294=29.4%
(b) P(≤2)=P(0)+P(1)+P(2)=
=(8−0)!0!8!(51)0(54)8−0+(8−1)!1!8!(51)1(54)8−1+(8−2)!2!8!(51)2(54)8−2=0.168+0.335+0.294=0.7975=79.75%
c) n=20
P(≥7)=P(7)+P(8)=
=(8−7)!7!8!(51)7(54)8−7+(8−8)!8!8!(51)8(54)8−8=
0.00008192+0.00000256=0.00008448=0.008448%
Comments