A population consists of the elements 3, 5, 7, 8, and 10. What is the population variance?
Round off your answer to the nearest hundredths.
Population mean:
"\\mu=\\cfrac{3+5+7+8+10}{5}=6.6."
Population variance:
"\\sigma^2=\\sum(x_i-\\mu)^2\\cdot P(x_i),"
"X-\\mu=\\\\\n=\\begin{Bmatrix}\n 3-6.6,5-6.6,7-6.6,8-6.6,10-6.6\n\\end{Bmatrix}="
"=\\begin{Bmatrix}\n-3.6, - 1.6,0.4,1.4,3.4\n\\end{Bmatrix},"
"\\sigma^2=(-3.6)^2\\cdot \\cfrac{1}{5}+(-1.6)^2\\cdot \\cfrac{1}{5}+\\\\\n+0.4^2\\cdot \\cfrac{1}{5}+1.4^2\\cdot \\cfrac{1}{5}+3.4^2\\cdot \\cfrac{1}{5}=5.84."
Comments
Leave a comment