A population consists of the elements 3, 5, 7, 8, and 10. What is the population variance?
Round off your answer to the nearest hundredths.
Population mean:
μ=3+5+7+8+105=6.6.\mu=\cfrac{3+5+7+8+10}{5}=6.6.μ=53+5+7+8+10=6.6.
Population variance:
σ2=∑(xi−μ)2⋅P(xi),\sigma^2=\sum(x_i-\mu)^2\cdot P(x_i),σ2=∑(xi−μ)2⋅P(xi),
X−μ=={3−6.6,5−6.6,7−6.6,8−6.6,10−6.6}=X-\mu=\\ =\begin{Bmatrix} 3-6.6,5-6.6,7-6.6,8-6.6,10-6.6 \end{Bmatrix}=X−μ=={3−6.6,5−6.6,7−6.6,8−6.6,10−6.6}=
={−3.6,−1.6,0.4,1.4,3.4},=\begin{Bmatrix} -3.6, - 1.6,0.4,1.4,3.4 \end{Bmatrix},={−3.6,−1.6,0.4,1.4,3.4},
σ2=(−3.6)2⋅15+(−1.6)2⋅15++0.42⋅15+1.42⋅15+3.42⋅15=5.84.\sigma^2=(-3.6)^2\cdot \cfrac{1}{5}+(-1.6)^2\cdot \cfrac{1}{5}+\\ +0.4^2\cdot \cfrac{1}{5}+1.4^2\cdot \cfrac{1}{5}+3.4^2\cdot \cfrac{1}{5}=5.84.σ2=(−3.6)2⋅51+(−1.6)2⋅51++0.42⋅51+1.42⋅51+3.42⋅51=5.84.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments