Question #342485

Solve the given problems



1. A population consists of the four numbers 1. 2. 4 and 5. List all the possible



samples of size n = 3 which can be drawn with replacement from the population



Find the following



a Population mean



b. Population variance



c. Population standard deviation



d. Mean of the sampling distribution of sample means



e. Variance of the sampling distribution of sample means



f Standard deviation of the sampling distribution of sample means

1
Expert's answer
2022-05-19T06:03:36-0400

We have population values 1,2,4,51,2,4,5 population size N=4N=4 and sample size n=3.n=3.

Thus, the number of possible samples which can be drawn with replacement is 43=64.4^3=64.

a. Population mean:


μ=1+2+4+54=3\mu=\dfrac{1+2+4+5}{4}=3


b. Population variance:



σ2=14((13)2+(23)2+(43)2+(53)2)\sigma^2=\dfrac{1}{4}((1-3)^2+(2-3)^2+(4-3)^2+(5-3)^2)=2.5=2.5



c. Population standard deviation:



σ=σ2=2.51.58114\sigma=\sqrt{\sigma^2}=\sqrt{2.5}\approx1.58114


d.



Sample valuesSample mean(Xˉ)1,1,111,1,24/31,1,421,1,57/31,2,14/31,2,25/31,2,47/31,2,58/31,4,121,4,27/31,4,431,4,510/31,5,17/31,5,28/31,5,410/31,5,511/32,1,14/32,1,25/32,1,47/32,1,58/32,2,15/32,2,222,2,48/32,2,532,4,17/32,4,28/32,4,410/32,4,511/32,5,18/32,5,232,5,411/32,5,544,1,124,1,27/34,1,434,1,510/34,2,17/34,2,28/34,2,410/34,2,511/34,4,134,4,210/34,4,444,4,513/34,5,110/34,5,211/34,5,413/34,5,514/35,1,17/35,1,28/35,1,410/35,1,511/35,2,18/35,2,235,2,411/35,2,545,4,110/35,4,211/35,4,413/35,4,514/35,5,111/35,5,245,5,414/35,5,55\def\arraystretch{1.5} \begin{array}{c:c} Sample\ values & Sample\ mean(\bar{X}) \\ \hline 1,1,1 & 1\\ \hdashline 1,1,2 & 4/3\\ \hdashline 1,1,4 & 2\\ \hdashline 1,1,5 & 7/3\\ \hdashline 1,2,1 & 4/3\\ \hdashline 1,2,2 & 5/3\\ \hdashline 1,2,4 & 7/3\\ \hdashline 1,2,5 & 8/3\\ \hdashline 1,4,1 & 2\\ \hdashline 1,4,2 & 7/3\\ \hdashline 1,4,4 & 3\\ \hdashline 1,4,5 & 10/3\\ \hdashline 1,5,1 & 7/3\\ \hdashline 1,5,2 & 8/3\\ \hdashline 1,5,4 & 10/3\\ \hdashline 1,5,5 & 11/3\\ \hdashline 2,1,1 & 4/3\\ \hdashline 2,1,2 & 5/3\\ \hdashline 2,1,4 & 7/3\\ \hdashline 2,1,5 & 8/3\\ \hdashline 2,2,1 & 5/3\\ \hdashline 2,2,2 & 2\\ \hdashline 2,2,4& 8/3\\ \hdashline 2,2,5 & 3\\ \hdashline 2,4,1 & 7/3\\ \hdashline 2,4,2 & 8/3\\ \hdashline 2,4,4 & 10/3\\ \hdashline 2,4,5 & 11/3\\ \hdashline 2,5,1 & 8/3\\ \hdashline 2,5,2 & 3\\ \hdashline 2,5,4 & 11/3\\ \hdashline 2,5,5 & 4\\ \hdashline 4,1,1 & 2\\ \hdashline 4,1,2 & 7/3\\ \hdashline 4,1,4 & 3\\ \hdashline 4,1,5 & 10/3\\ \hdashline 4,2,1 & 7/3\\ \hdashline 4,2,2 & 8/3\\ \hdashline 4,2,4 & 10/3\\ \hdashline 4,2,5 & 11/3\\ \hdashline 4,4,1 & 3\\ \hdashline 4,4,2 & 10/3\\ \hdashline 4,4,4 & 4\\ \hdashline 4,4,5 & 13/3\\ \hdashline 4,5,1 & 10/3\\ \hdashline 4,5,2 & 11/3\\ \hdashline 4,5,4 & 13/3\\ \hdashline 4,5,5 & 14/3\\ \hdashline 5,1,1 & 7/3\\ \hdashline 5,1,2 & 8/3\\ \hdashline 5,1,4 & 10/3\\ \hdashline 5,1,5 & 11/3\\ \hdashline 5,2,1 & 8/3\\ \hdashline 5,2,2 & 3\\ \hdashline 5,2,4 & 11/3\\ \hdashline 5,2,5 &4\\ \hdashline 5,4,1 & 10/3\\ \hdashline 5,4,2 & 11/3\\ \hdashline 5,4,4 & 13/3\\ \hdashline 5,4,5 & 14/3\\ \hdashline 5,5,1 &11/3\\ \hdashline 5,5,2 & 4\\ \hdashline 5,5,4 & 14/3\\ \hdashline 5,5,5 & 5\\ \hdashline \end{array}




The sampling distribution of the sample mean Xˉ\bar{X} is



Xˉff(Xˉ)Xf(Xˉ)X2f(Xˉ)111/641/643/1924/333/644/6416/1925/333/645/6425/192244/648/6448/1927/399/6421/64147/1928/399/6424/64192/192366/6418/64162/19210/399/6430/64300/19211/399/6433/64363/192444/6416/64192/19213/333/6413/64169/19214/333/6414/64196/192511/645/6475/192Sum=641359/6\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & Xf(\bar{X})& X^2f(\bar{X}) \\ \hline & 1 & 1 & 1/64 & 1/64 & 3/192\\ \hdashline & 4/3 & 3 & 3/64 & 4/64 & 16/192 \\ \hdashline & 5/3 & 3 & 3/64 & 5/64 & 25/192\\ \hdashline & 2 & 4 & 4/64 & 8/64 & 48/192 \\ \hdashline & 7/3 & 9 & 9/64 & 21/64 & 147/192 \\ \hdashline & 8/3 & 9 & 9/64 & 24/64 & 192/192 \\ \hdashline & 3 & 6 & 6/64 & 18/64 & 162/192 \\ \hdashline & 10/3 & 9 & 9/64 & 30/64 & 300/192 \\ \hdashline & 11/3 & 9 & 9/64 & 33/64 & 363/192 \\ \hdashline & 4 & 4 & 4/64 & 16/64 & 192/192 \\ \hdashline & 13/3 & 3 & 3/64 & 13/64 & 169/192 \\ \hdashline & 14/3 & 3 & 3/64 & 14/64 & 196/192 \\ \hdashline & 5 & 1 & 1/64 & 5/64 & 75/192 \\ \hdashline Sum= & & 64 & 1 & 3 & 59/6 \\ \hdashline \end{array}



e. The mean of the sample means is



μXˉ=E(Xˉ)=3\mu_{ \bar{X}}=E(\bar{X})=3





Var(Xˉ)=σXˉ2=E(Xˉ2)(E(Xˉ))2Var(\bar{X})=\sigma^2_{\bar{X}}=E(\bar{X}^2)-(E(\bar{X}))^2




=596(3)2=56=\dfrac{59}{6}-(3)^2=\dfrac{5}{6}μXˉ=μ\mu_{\bar{X}}=\muσXˉ2=σ2n\sigma_{\bar{X}}^2=\dfrac{\sigma^2}{n}


f. Standard deviation of the sampling distribution of sample means:



σXˉ=σXˉ2=560.91287\sigma_{\bar{X}}=\sqrt{\sigma_{\bar{X}}^2}=\sqrt{\dfrac{5}{6}}\approx0.91287

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS