Answer to Question #342485 in Statistics and Probability for Fema Shien

Question #342485

Solve the given problems



1. A population consists of the four numbers 1. 2. 4 and 5. List all the possible



samples of size n = 3 which can be drawn with replacement from the population



Find the following



a Population mean



b. Population variance



c. Population standard deviation



d. Mean of the sampling distribution of sample means



e. Variance of the sampling distribution of sample means



f Standard deviation of the sampling distribution of sample means

1
Expert's answer
2022-05-19T06:03:36-0400

We have population values "1,2,4,5" population size "N=4" and sample size "n=3."

Thus, the number of possible samples which can be drawn with replacement is "4^3=64."

a. Population mean:


"\\mu=\\dfrac{1+2+4+5}{4}=3"


b. Population variance:



"\\sigma^2=\\dfrac{1}{4}((1-3)^2+(2-3)^2+(4-3)^2+(5-3)^2)""=2.5"



c. Population standard deviation:



"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{2.5}\\approx1.58114"


d.



"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n Sample\\ values & Sample\\ mean(\\bar{X}) \\\\ \\hline\n 1,1,1 & 1\\\\\n \\hdashline\n 1,1,2 & 4\/3\\\\\n \\hdashline\n 1,1,4 & 2\\\\\n \\hdashline\n 1,1,5 & 7\/3\\\\\n \\hdashline\n 1,2,1 & 4\/3\\\\\n \\hdashline\n 1,2,2 & 5\/3\\\\\n \\hdashline\n 1,2,4 & 7\/3\\\\\n \\hdashline\n 1,2,5 & 8\/3\\\\\n \\hdashline\n 1,4,1 & 2\\\\\n \\hdashline\n 1,4,2 & 7\/3\\\\\n \\hdashline\n 1,4,4 & 3\\\\\n \\hdashline\n 1,4,5 & 10\/3\\\\\n \\hdashline\n 1,5,1 & 7\/3\\\\\n \\hdashline\n 1,5,2 & 8\/3\\\\\n \\hdashline\n 1,5,4 & 10\/3\\\\\n \\hdashline\n 1,5,5 & 11\/3\\\\\n \\hdashline\n 2,1,1 & 4\/3\\\\\n \\hdashline\n 2,1,2 & 5\/3\\\\\n \\hdashline\n 2,1,4 & 7\/3\\\\\n \\hdashline\n 2,1,5 & 8\/3\\\\\n \\hdashline\n 2,2,1 & 5\/3\\\\\n \\hdashline\n 2,2,2 & 2\\\\\n \\hdashline\n 2,2,4& 8\/3\\\\\n \\hdashline\n 2,2,5 & 3\\\\\n \\hdashline\n 2,4,1 & 7\/3\\\\\n \\hdashline\n 2,4,2 & 8\/3\\\\\n \\hdashline\n 2,4,4 & 10\/3\\\\\n \\hdashline\n 2,4,5 & 11\/3\\\\\n \\hdashline\n 2,5,1 & 8\/3\\\\\n \\hdashline\n 2,5,2 & 3\\\\\n \\hdashline\n 2,5,4 & 11\/3\\\\\n \\hdashline\n 2,5,5 & 4\\\\\n \\hdashline\n 4,1,1 & 2\\\\\n \\hdashline\n 4,1,2 & 7\/3\\\\\n \\hdashline\n 4,1,4 & 3\\\\\n \\hdashline\n 4,1,5 & 10\/3\\\\\n \\hdashline\n 4,2,1 & 7\/3\\\\\n \\hdashline\n 4,2,2 & 8\/3\\\\\n \\hdashline\n 4,2,4 & 10\/3\\\\\n \\hdashline\n 4,2,5 & 11\/3\\\\\n \\hdashline\n 4,4,1 & 3\\\\\n \\hdashline\n 4,4,2 & 10\/3\\\\\n \\hdashline\n 4,4,4 & 4\\\\\n \\hdashline\n 4,4,5 & 13\/3\\\\\n \\hdashline\n 4,5,1 & 10\/3\\\\\n \\hdashline\n 4,5,2 & 11\/3\\\\\n \\hdashline\n 4,5,4 & 13\/3\\\\\n \\hdashline\n 4,5,5 & 14\/3\\\\\n \\hdashline\n 5,1,1 & 7\/3\\\\\n \\hdashline\n 5,1,2 & 8\/3\\\\\n \\hdashline\n 5,1,4 & 10\/3\\\\\n \\hdashline\n 5,1,5 & 11\/3\\\\\n \\hdashline\n 5,2,1 & 8\/3\\\\\n \\hdashline\n 5,2,2 & 3\\\\\n \\hdashline\n 5,2,4 & 11\/3\\\\\n \\hdashline\n 5,2,5 &4\\\\\n \\hdashline\n 5,4,1 & 10\/3\\\\\n \\hdashline\n 5,4,2 & 11\/3\\\\\n \\hdashline\n 5,4,4 & 13\/3\\\\\n \\hdashline\n 5,4,5 & 14\/3\\\\\n \\hdashline\n 5,5,1 &11\/3\\\\\n \\hdashline\n 5,5,2 & 4\\\\\n \\hdashline\n 5,5,4 & 14\/3\\\\\n \\hdashline\n 5,5,5 & 5\\\\\n \\hdashline\n\\end{array}"




The sampling distribution of the sample mean "\\bar{X}" is



"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c}\n & \\bar{X} & f & f(\\bar{X}) & Xf(\\bar{X})& X^2f(\\bar{X}) \\\\ \\hline\n & 1 & 1 & 1\/64 & 1\/64 & 3\/192\\\\\n \\hdashline\n & 4\/3 & 3 & 3\/64 & 4\/64 & 16\/192 \\\\\n \\hdashline\n & 5\/3 & 3 & 3\/64 & 5\/64 & 25\/192\\\\\n \\hdashline\n & 2 & 4 & 4\/64 & 8\/64 & 48\/192 \\\\\n \\hdashline\n & 7\/3 & 9 & 9\/64 & 21\/64 & 147\/192 \\\\\n \\hdashline\n & 8\/3 & 9 & 9\/64 & 24\/64 & 192\/192 \\\\\n \\hdashline\n & 3 & 6 & 6\/64 & 18\/64 & 162\/192 \\\\\n \\hdashline\n & 10\/3 & 9 & 9\/64 & 30\/64 & 300\/192 \\\\\n \\hdashline\n & 11\/3 & 9 & 9\/64 & 33\/64 & 363\/192 \\\\\n \\hdashline\n & 4 & 4 & 4\/64 & 16\/64 & 192\/192 \\\\\n \\hdashline\n & 13\/3 & 3 & 3\/64 & 13\/64 & 169\/192 \\\\\n \\hdashline\n & 14\/3 & 3 & 3\/64 & 14\/64 & 196\/192 \\\\\n \\hdashline\n & 5 & 1 & 1\/64 & 5\/64 & 75\/192 \\\\\n \\hdashline\n Sum= & & 64 & 1 & 3 & 59\/6 \n \n \n \n \n \n \n \n \n \\\\\n \\hdashline\n\\end{array}"



e. The mean of the sample means is



"\\mu_{ \\bar{X}}=E(\\bar{X})=3"





"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=E(\\bar{X}^2)-(E(\\bar{X}))^2"




"=\\dfrac{59}{6}-(3)^2=\\dfrac{5}{6}""\\mu_{\\bar{X}}=\\mu""\\sigma_{\\bar{X}}^2=\\dfrac{\\sigma^2}{n}"


f. Standard deviation of the sampling distribution of sample means:



"\\sigma_{\\bar{X}}=\\sqrt{\\sigma_{\\bar{X}}^2}=\\sqrt{\\dfrac{5}{6}}\\approx0.91287"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS