We have population values 1,2,4,5 population size N=4 and sample size n=3.
Thus, the number of possible samples which can be drawn with replacement is 43=64.
a. Population mean:
μ=41+2+4+5=3
b. Population variance:
σ2=41((1−3)2+(2−3)2+(4−3)2+(5−3)2)=2.5
c. Population standard deviation:
σ=σ2=2.5≈1.58114
d.
Sample values1,1,11,1,21,1,41,1,51,2,11,2,21,2,41,2,51,4,11,4,21,4,41,4,51,5,11,5,21,5,41,5,52,1,12,1,22,1,42,1,52,2,12,2,22,2,42,2,52,4,12,4,22,4,42,4,52,5,12,5,22,5,42,5,54,1,14,1,24,1,44,1,54,2,14,2,24,2,44,2,54,4,14,4,24,4,44,4,54,5,14,5,24,5,44,5,55,1,15,1,25,1,45,1,55,2,15,2,25,2,45,2,55,4,15,4,25,4,45,4,55,5,15,5,25,5,45,5,5Sample mean(Xˉ)14/327/34/35/37/38/327/3310/37/38/310/311/34/35/37/38/35/328/337/38/310/311/38/3311/3427/3310/37/38/310/311/3310/3413/310/311/313/314/37/38/310/311/38/3311/3410/311/313/314/311/3414/35
The sampling distribution of the sample mean Xˉ is
Sum=Xˉ14/35/327/38/3310/311/3413/314/35f133499699433164f(Xˉ)1/643/643/644/649/649/646/649/649/644/643/643/641/641Xf(Xˉ)1/644/645/648/6421/6424/6418/6430/6433/6416/6413/6414/645/643X2f(Xˉ)3/19216/19225/19248/192147/192192/192162/192300/192363/192192/192169/192196/19275/19259/6
e. The mean of the sample means is
μXˉ=E(Xˉ)=3
Var(Xˉ)=σXˉ2=E(Xˉ2)−(E(Xˉ))2
=659−(3)2=65μXˉ=μσXˉ2=nσ2
f. Standard deviation of the sampling distribution of sample means:
σXˉ=σXˉ2=65≈0.91287                             
Comments