If P(E1)=P(E2)=0.15, P(E3)=0.4, and P(E4)=2P(E5), calculate the P (E4) and P(E5).
We know that total probability =1
i.e. sum of probabilities P(E1)+P(E2)+P(E3)+P(E4)+P(E5)=1P(E_1)+P(E_2)+P(E_3)+P(E_4)+P(E_5)=1P(E1)+P(E2)+P(E3)+P(E4)+P(E5)=1
So, 0.15+0.15+0.4+2x+x=10.15+0.15+0.4+2x+x=10.15+0.15+0.4+2x+x=1
where x=P(E5)x=P(E_5)x=P(E5)
Solving for xxx we get:
3x=1−0.73x=1-0.73x=1−0.7
3x=0.33x=0.33x=0.3
x=0.1x=0.1x=0.1
So, P(E5)=0.1P(E_5)=0.1P(E5)=0.1 and P(E4)=2∗0.1=0.2P(E_4)=2*0.1=0.2P(E4)=2∗0.1=0.2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment