(a) We have population values 1,2,3,4,5,6, population size N=6 and sample size n=2.
Mean of population (μ) = 61+2+3+4+5+6=3.5
Variance of population
σ2=NΣ(xi−xˉ)2=61(6.25+2.25+0.25
+0.25+2.25+6.25)=617.5
σ=σ2=617.5≈1.707825
(b) The number of possible samples which can be drawn without replacement is NCn=6C2=15.
no123456789101112131415Sample1,21,31,41,51,62,32,42,52,63,43,53,64,54,65,6Samplemean (xˉ)3/24/25/26/27/25/26/27/28/27/28/29/29/210/211/2
Xˉ3/24/25/26/27/28/29/210/211/2f(Xˉ)1/151/152/152/153/152/152/151/151/15Xˉf(Xˉ)3/304/3010/3012/3021/3016/3018/3010/3011/30Xˉ2f(Xˉ)9/6016/6050/6072/60147/60128/60162/60100/60121/60
(c) Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=30105=3.5=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=60805−(3.5)2=67=nσ2(N−1N−n)
σXˉ=67≈1.080123
Comments