A population consists of five numbers 1, 2, 3, 4, 5 and 6. Suppose samples of size 2 are drawn from this
population.
(a) Find the mean and variance of the population
(b) Describe the sampling distribution of the sample means.
(c) Find the mean and variance of the sampling distribution of the sample means.
(a) We have population values 1,2,3,4,5,6, population size N=6 and sample size n=2.
Mean of population "(\\mu)" = "\\dfrac{1+2+3+4+5+6}{6}=3.5"
Variance of population
(b) The number of possible samples which can be drawn without replacement is "^{N}C_n=^{6}C_2=15."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 1,2 & 3\/2 \\\\\n \\hdashline\n 2 & 1,3 & 4\/2 \\\\\n \\hdashline\n 3 & 1,4 & 5\/2\\\\\n \\hdashline\n 4 & 1,5 & 6\/2 \\\\\n \\hdashline\n 5 & 1,6 & 7\/2 \\\\\n \\hdashline\n 6 & 2,3 & 5\/2 \\\\\n \\hdashline\n 7 & 2,4 & 6\/2 \\\\\n \\hdashline\n 8 & 2,5 & 7\/2 \\\\\n \\hdashline\n 9 & 2,6 & 8\/2 \\\\\n \\hdashline\n 10 & 3,4 & 7\/2 \\\\\n \\hdashline\n 11 & 3,5 & 8\/2 \\\\\n \\hdashline\n 12 & 3,6 & 9\/2 \\\\\n \\hdashline\n 13 & 4,5 & 9\/2 \\\\\n \\hdashline\n 14 & 4,6 & 10\/2 \\\\\n \\hdashline\n 15 & 5,6 & 11\/2 \\\\\n \\hdashline\n\\end{array}"(c) Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{105}{30}=3.5=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{805}{60}-(3.5)^2=\\dfrac{7}{6}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{7}{6}}\\approx1.080123"
Comments
Leave a comment