Question #342004

A population consists of five numbers 1, 2, 3, 4, 5 and 6. Suppose samples of size 2 are drawn from this



population.



(a) Find the mean and variance of the population



(b) Describe the sampling distribution of the sample means.



(c) Find the mean and variance of the sampling distribution of the sample means.

1
Expert's answer
2022-05-18T06:55:49-0400

(a) We have population values 1,2,3,4,5,6, population size N=6 and sample size n=2.

Mean of population (μ)(\mu) = 1+2+3+4+5+66=3.5\dfrac{1+2+3+4+5+6}{6}=3.5

Variance of population 


σ2=Σ(xixˉ)2N=16(6.25+2.25+0.25\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=\dfrac{1}{6}(6.25+2.25+0.25




+0.25+2.25+6.25)=17.56+0.25+2.25+6.25)=\dfrac{17.5}{6}


σ=σ2=17.561.707825\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{17.5}{6}}\approx1.707825


(b) The number of possible samples which can be drawn without replacement is NCn=6C2=15.^{N}C_n=^{6}C_2=15.

noSampleSamplemean (xˉ)11,23/221,34/231,45/241,56/251,67/262,35/272,46/282,57/292,68/2103,47/2113,58/2123,69/2134,59/2144,610/2155,611/2\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,2 & 3/2 \\ \hdashline 2 & 1,3 & 4/2 \\ \hdashline 3 & 1,4 & 5/2\\ \hdashline 4 & 1,5 & 6/2 \\ \hdashline 5 & 1,6 & 7/2 \\ \hdashline 6 & 2,3 & 5/2 \\ \hdashline 7 & 2,4 & 6/2 \\ \hdashline 8 & 2,5 & 7/2 \\ \hdashline 9 & 2,6 & 8/2 \\ \hdashline 10 & 3,4 & 7/2 \\ \hdashline 11 & 3,5 & 8/2 \\ \hdashline 12 & 3,6 & 9/2 \\ \hdashline 13 & 4,5 & 9/2 \\ \hdashline 14 & 4,6 & 10/2 \\ \hdashline 15 & 5,6 & 11/2 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)3/21/153/309/604/21/154/3016/605/22/1510/3050/606/22/1512/3072/607/23/1521/30147/608/22/1516/30128/609/22/1518/30162/6010/21/1510/30100/6011/21/1511/30121/60\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 3/2 & 1/15 & 3/30 & 9/60 \\ \hdashline 4/2 & 1/15 & 4/30 & 16/60 \\ \hdashline 5/2 & 2/15 & 10/30 & 50/60 \\ \hdashline 6/2 & 2/15 & 12/30 & 72/60 \\ \hdashline 7/2 & 3/15 & 21/30 & 147/60 \\ \hdashline 8/2 & 2/15 & 16/30 & 128/60 \\ \hdashline 9/2 & 2/15 & 18/30 & 162/60 \\ \hdashline 10/2 & 1/15 & 10/30 & 100/60 \\ \hdashline 11/2 & 1/15 & 11/30 & 121/60 \\ \hdashline \end{array}



(c) Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=10530=3.5=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{105}{30}=3.5=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=80560(3.5)2=76=σ2n(NnN1)=\dfrac{805}{60}-(3.5)^2=\dfrac{7}{6}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=761.080123\sigma_{\bar{X}}=\sqrt{\dfrac{7}{6}}\approx1.080123

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS