We have population values 6,9,12,15,18,21, population size N=6 and sample size n=3.
Mean of population (μ) = 66+9+12+15+18+21=13.5
Variance of population
σ2=nΣ(xi−xˉ)2=61(56.25+20.25+2.25
+2.25+20.25+56.25)=26.25
σ=σ2=26.25≈5.1235Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is NCn=6C3=20.
no1234567891011121314151617181920Sample6,9,126,9,156,9,186,9,216,12,156,12,186,12,216,15,186,15,216,18,219,12,159,12,189,12,219,15,189,15,219,18,2112,15,1812,15,2112,18,2115,18,21Samplemean (xˉ)910111211121313141512131414151615161718
B.
Xˉ9101112131415161718f(Xˉ)1/201/202/203/203/203/203/202/201/201/20Xˉf(Xˉ)9/2010/2022/2036/2039/2042/2045/2032/2017/2018/20Xˉ2f(Xˉ)81/20100/20242/20432/20507/20588/20675/20512/20289/20324/20
Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=20270=13.5=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=203750−(13.5)2=5.25=nσ2(N−1N−n)
σXˉ=5.25≈2.2913
Comments