Question #341925

A GROUP OF STUDENT GOT THE FOLLOWING SCORES IN A TEST 6, 9, 12, 15, 18, AND 21. CONSIDER SAMPLE SIZE 3 THAT CAN BE DRAWN FROM THIS POPULATION.

1
Expert's answer
2022-05-18T06:50:05-0400

We have population values 6,9,12,15,18,21, population size N=6 and sample size n=3.

Mean of population (μ)(\mu) = 6+9+12+15+18+216=13.5\dfrac{6+9+12+15+18+21}{6}=13.5

Variance of population 


σ2=Σ(xixˉ)2n=16(56.25+20.25+2.25\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{6}(56.25+20.25+2.25


+2.25+20.25+56.25)=26.25+2.25+20.25+56.25)=26.25

σ=σ2=26.255.1235\sigma=\sqrt{\sigma^2}=\sqrt{26.25}\approx5.1235

Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=6C3=20.^{N}C_n=^{6}C_3=20.

noSampleSamplemean (xˉ)16,9,12926,9,151036,9,181146,9,211256,12,151166,12,181276,12,211386,15,181396,15,2114106,18,2115119,12,1512129,12,1813139,12,2114149,15,1814159,15,2115169,18,21161712,15,18151812,15,21161912,18,21172015,18,2118\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 6,9,12 & 9 \\ \hdashline 2 & 6,9,15 & 10 \\ \hdashline 3 & 6,9,18 & 11 \\ \hdashline 4 & 6,9,21 & 12 \\ \hdashline 5 & 6,12,15 & 11 \\ \hdashline 6 & 6,12,18 & 12 \\ \hdashline 7 & 6,12, 21 & 13 \\ \hdashline 8 & 6,15,18 & 13 \\ \hdashline 9 & 6,15,21 & 14 \\ \hdashline 10 & 6, 18,21 & 15 \\ \hdashline 11 & 9,12,15 & 12 \\ \hdashline 12 & 9, 12,18 & 13 \\ \hdashline 13 & 9, 12, 21 & 14 \\ \hdashline 14 & 9,15,18 & 14 \\ \hdashline 15 & 9,15,21 & 15 \\ \hdashline 16 & 9, 18,21 & 16 \\ \hdashline 17 & 12, 15,18 & 15 \\ \hdashline 18 & 12, 15,21 & 16 \\ \hdashline 19 & 12, 18,21 & 17 \\ \hdashline 20 & 15, 18,21 & 18 \\ \hdashline \end{array}



B.


Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)91/209/2081/20101/2010/20100/20112/2022/20242/20123/2036/20432/20133/2039/20507/20143/2042/20588/20153/2045/20675/20162/2032/20512/20171/2017/20289/20181/2018/20324/20\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 9 & 1/20 & 9/20 & 81/20 \\ \hdashline 10 & 1/20 & 10/20 & 100/20 \\ \hdashline 11 & 2/20 & 22/20 & 242/20 \\ \hdashline 12 & 3/20 & 36/20 & 432/20 \\ \hdashline 13 & 3/20 & 39/20 & 507/20 \\ \hdashline 14 & 3/20 & 42/20 & 588/20 \\ \hdashline 15 & 3/20 & 45/20 & 675/20 \\ \hdashline 16 & 2/20 & 32/20 & 512/20 \\ \hdashline 17 & 1/20 & 17/20 & 289/20 \\ \hdashline 18 & 1/20 & 18/20 & 324/20 \\ \hdashline \end{array}



Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=27020=13.5=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{270}{20}=13.5=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=375020(13.5)2=5.25=σ2n(NnN1)=\dfrac{3750}{20}-(13.5)^2=5.25= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=5.252.2913\sigma_{\bar{X}}=\sqrt{5.25}\approx2.2913


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS