Question #341847

Defects in a certain wire occur at the rate of one per 10 meter. Assume the defects have a Poisson distribution. What is the probability that: (a) a 20-meter wire has no defects? (b) a 20-meter wire has at most 2 defects?


1
Expert's answer
2022-05-17T23:07:26-0400

We have a Poisson distribution,

λ=1 defects per 10 meter;for 20-meter wire t=2;Pt(X=k)=(λt)keλtk!=(12)ke12k!==2ke2k!;(a) P2(X=0)=20e20!=0.1353.(b) P2(X2)==P2(X=0)+P2(X=1)+P2(X=2)==20e20!+21e21!+22e22!==0.1353+0.2707+0.2707=0.6767.λ=1 \text{ defects per 10 meter};\\ \text{for 20-meter wire } t = 2;\\ P_t(X=k)=\cfrac{(\lambda t)^k\cdot e^{-\lambda t}}{k!}=\cfrac{(1\cdot2)^k\cdot e^{-1\cdot2}}{k!}=\\ =\cfrac{2^k\cdot e^{-2}}{k!};\\ \text{(a) }P_2(X=0)=\cfrac{2^0\cdot e^{-2}}{0!}=0.1353.\\ \text{(b) } P_2(X\le2)=\\ =P_2(X=0)+P_2(X=1)+P_2(X=2)=\\ =\cfrac{2^0\cdot e^{-2}}{0!}+\cfrac{2^1\cdot e^{-2}}{1!}+\cfrac{2^2\cdot e^{-2}}{2!}=\\ =0.1353+0.2707+0.2707=0.6767.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS