Defects in a certain wire occur at the rate of one per 10 meter. Assume the defects have a Poisson distribution. What is the probability that: (a) a 20-meter wire has no defects? (b) a 20-meter wire has at most 2 defects?
We have a Poisson distribution,
"\u03bb=1 \\text{ defects per 10 meter};\\\\\n\\text{for 20-meter wire } t = 2;\\\\\nP_t(X=k)=\\cfrac{(\\lambda t)^k\\cdot e^{-\\lambda t}}{k!}=\\cfrac{(1\\cdot2)^k\\cdot e^{-1\\cdot2}}{k!}=\\\\\n=\\cfrac{2^k\\cdot e^{-2}}{k!};\\\\\n\\text{(a) }P_2(X=0)=\\cfrac{2^0\\cdot e^{-2}}{0!}=0.1353.\\\\\n\n\n\\text{(b) } P_2(X\\le2)=\\\\\n=P_2(X=0)+P_2(X=1)+P_2(X=2)=\\\\\n=\\cfrac{2^0\\cdot e^{-2}}{0!}+\\cfrac{2^1\\cdot e^{-2}}{1!}+\\cfrac{2^2\\cdot e^{-2}}{2!}=\\\\\n=0.1353+0.2707+0.2707=0.6767."
Comments
Leave a comment