Question #341402

When three coins are tossed,the probability distribution for the random variable x representing the number of heads that occurs is given below compute the variance and standard deviation of the probability distribution


1
Expert's answer
2022-05-16T15:40:20-0400
xTTT0TTH1THT1HTT1THH2HTH2HHT2HHH3\def\arraystretch{1.5} \begin{array}{c:c} & x \\ \hline TTT & 0 \\ \hdashline TTH & 1\\ \hdashline THT & 1 \\ \hdashline HTT & 1 \\ \hdashline THH & 2 \\ \hdashline HTH & 2\\ \hdashline HHT & 2\\ \hdashline HHH & 3 \\ \hdashline \end{array}


x0123p(x)1/83/83/81/8\def\arraystretch{1.5} \begin{array}{c:c} x & 0 & 1 & 2 & 3 \\ \hline p(x) & 1/8 & 3/8 & 3/8 & 1/8 \\ \end{array}

E(X)=18(0)+38(1)+38(2)+18(3)=32E(X)=\dfrac{1}{8}(0)+\dfrac{3}{8}(1)+\dfrac{3}{8}(2)+\dfrac{1}{8}(3)=\dfrac{3}{2}

E(X2)=18(0)2+38(1)2+38(2)2+18(3)2=3E(X^2)=\dfrac{1}{8}(0)^2+\dfrac{3}{8}(1)^2+\dfrac{3}{8}(2)^2+\dfrac{1}{8}(3)^2=3

Var(X)=σ2=E(X2)(E(X))2Var(X)=\sigma^2=E(X^2)-(E(X))^2

=3(32)2=34=3-(\dfrac{3}{2})^2=\dfrac{3}{4}

σ=σ2=34=320.8660\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{3}}{2}\approx0.8660


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS