Answer to Question #341322 in Statistics and Probability for Killua

Question #341322
  1. A population consists of six values (6, 9, 12, 15, 18, and 21). (with illustration)

e. Determine the mean, variance and standard deviation of the sample mean.


2. The scores of individual students on a national test have a normal distribution with mean of 18.6 and a standard deviation of 5.9. At Federico Ramos Rural High School, 76 students took the test. If the scores at this school have the same distribution as national scores, solve for the following: (with illustration)

a. determine the mean and standard deviation of the sampling distribution of the sample mean.


1
Expert's answer
2022-05-16T23:42:42-0400

1. We have population values 6,9,12,15,18,21, population size N=6 and sample size n=3.

Mean of population "(\\mu)" = "\\dfrac{6+9+12+15+18+21}{6}=13.5"

Variance of population 


"\\sigma^2=\\dfrac{\\Sigma(x_i-\\bar{x})^2}{n}=\\dfrac{1}{6}(56.25+20.25+2.25"


"+2.25+20.25+56.25)=26.25"

"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{26.25}\\approx5.1235"

Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is "^{N}C_n=^{6}C_3=20."

"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 6,9,12 & 9 \\\\\n \\hdashline\n 2 & 6,9,15 & 10 \\\\\n \\hdashline\n 3 & 6,9,18 & 11 \\\\\n \\hdashline\n 4 & 6,9,21 & 12 \\\\\n \\hdashline\n 5 & 6,12,15 & 11 \\\\\n \\hdashline\n 6 & 6,12,18 & 12 \\\\\n \\hdashline\n 7 & 6,12, 21 & 13 \\\\\n \\hdashline\n 8 & 6,15,18 & 13 \\\\\n \\hdashline\n 9 & 6,15,21 & 14 \\\\\n \\hdashline\n 10 & 6, 18,21 & 15 \\\\\n \\hdashline\n 11 & 9,12,15 & 12 \\\\\n \\hdashline\n 12 & 9, 12,18 & 13 \\\\\n \\hdashline\n 13 & 9, 12, 21 & 14 \\\\\n \\hdashline\n 14 & 9,15,18 & 14 \\\\\n \\hdashline\n 15 & 9,15,21 & 15 \\\\\n \\hdashline\n 16 & 9, 18,21 & 16 \\\\\n \\hdashline\n 17 & 12, 15,18 & 15 \\\\\n \\hdashline\n 18 & 12, 15,21 & 16 \\\\\n \\hdashline\n 19 & 12, 18,21 & 17 \\\\\n \\hdashline\n 20 & 15, 18,21 & 18 \\\\\n \\hdashline\n\\end{array}"



B.


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n \\bar{X} & f(\\bar{X}) &\\bar{X} f(\\bar{X}) & \\bar{X}^2f(\\bar{X})\n\\\\ \\hline\n 9 & 1\/20 & 9\/20 & 81\/20 \\\\\n \\hdashline\n 10 & 1\/20 & 10\/20 & 100\/20 \\\\\n \\hdashline\n 11 & 2\/20 & 22\/20 & 242\/20 \\\\\n \\hdashline\n 12 & 3\/20 & 36\/20 & 432\/20 \\\\\n \\hdashline\n 13 & 3\/20 & 39\/20 & 507\/20 \\\\\n \\hdashline\n 14 & 3\/20 & 42\/20 & 588\/20 \\\\\n \\hdashline\n 15 & 3\/20 & 45\/20 & 675\/20 \\\\\n \\hdashline\n 16 & 2\/20 & 32\/20 & 512\/20 \\\\\n \\hdashline\n 17 & 1\/20 & 17\/20 & 289\/20 \\\\\n \\hdashline\n 18 & 1\/20 & 18\/20 & 324\/20 \\\\\n \\hdashline\n\\end{array}"



Mean of sampling distribution 

"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{270}{20}=13.5=\\mu"



The variance of sampling distribution 

"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{3750}{20}-(13.5)^2=5.25= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})"

"\\sigma_{\\bar{X}}=\\sqrt{5.25}\\approx2.2913"

2.


"\\mu_{\\bar{X}}=\\mu=18.6"

"\\sigma_{\\bar{X}}=\\dfrac{\\sigma}{\\sqrt{n}}=\\dfrac{5.9}{\\sqrt{76}}=0.6768"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS