FIND THE MEAN OF THE SET OF DATA BELOW AND CONSTRUCT A SAMPLING DISTRIBUTION
BY SELECTING 3 SAMPLES AT A TIME: 7 10 14 17 20
We have population values 7,10,14,17,20, population size N=5 and sample size n=3.
Mean of population "(\\mu)" = "\\dfrac{7+10+14+17+20}{5}=\\dfrac{68}{5}"
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_3=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 7,10,14 & 31\/3\\\\\n \\hdashline\n 2 & 7,10,17 & 34\/3 \\\\\n \\hdashline\n 3 & 7,10,20 & 37\/3 \\\\\n \\hdashline\n 4 & 7,14,17 & 38\/3 \\\\\n \\hdashline\n 5 & 7,14,20 & 41\/3 \\\\\n \\hdashline\n 6 & 7,17,20 & 44\/3 \\\\\n \\hdashline\n 7 & 10,14,17 & 41\/3 \\\\\n \\hdashline\n 8 & 10,14,20 & 44\/3 \\\\\n \\hdashline\n 9 & 10,17,20 & 47\/3 \\\\\n \\hdashline\n 10 &14,17,20 & 51\/3 \\\\\n \\hdashline\n\\end{array}"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{408}{30}=\\dfrac{68}{5}=\\mu"
Comments
Leave a comment