Question #339846

A population consists of 1, 5, 6, 8, 12, 7, and 11. Suppose a sample of size 3. Find the 

mean and variance.


1
Expert's answer
2022-05-12T04:18:55-0400

Mean of population 

μ=1+5+6+8+12+7+117=507\mu=\dfrac{1+5+6+8+12+7+11}{7}=\dfrac{50}{7}7.142857\approx7.142857

Variance of population 


σ2=Σ(xixˉ)2n\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}


=17((1507)2+(5507)2+(6507)2=\dfrac{1}{7}((1-\dfrac{50}{7})^2+(5-\dfrac{50}{7})^2+(6-\dfrac{50}{7})^2

+(8507)2+(12507)2+(7507)2+(8-\dfrac{50}{7})^2+(12-\dfrac{50}{7})^2+(7-\dfrac{50}{7})^2

+(11507)2)=5804911.836735+(11-\dfrac{50}{7})^2)=\dfrac{580}{49}\approx11.836735

Mean of sampling distribution 

μXˉ=E(Xˉ)=507=μ\mu_{\bar{X}}=E(\bar{X})=\dfrac{50}{7}=\mu


Variance of sampling distribution (without replacement)


Var(Xˉ)=σXˉ2=σ2n(NnN1)Var(\bar{X})=\sigma_{\bar{X}}^2=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

=58049(7)(7271)=14501029=\dfrac{580}{49(7)}(\dfrac{7-2}{7-1})=\dfrac{1450}{1029}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS