A population consists of 1, 5, 6, 8, 12, 7, and 11. Suppose a sample of size 3. Find the
mean and variance.
Mean of population
"\\mu=\\dfrac{1+5+6+8+12+7+11}{7}=\\dfrac{50}{7}""\\approx7.142857"Variance of population
"=\\dfrac{1}{7}((1-\\dfrac{50}{7})^2+(5-\\dfrac{50}{7})^2+(6-\\dfrac{50}{7})^2"
"+(8-\\dfrac{50}{7})^2+(12-\\dfrac{50}{7})^2+(7-\\dfrac{50}{7})^2"
"+(11-\\dfrac{50}{7})^2)=\\dfrac{580}{49}\\approx11.836735"
Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\dfrac{50}{7}=\\mu"Variance of sampling distribution (without replacement)
"=\\dfrac{580}{49(7)}(\\dfrac{7-2}{7-1})=\\dfrac{1450}{1029}"
Comments
Leave a comment