Question #339833

1. A population consists of six values (6, 9, 12, 15, 18, and 21).


a. Select a random sample of size 3. Explain the random sampling that you used.


b. How many possible samples can be drawn?


c. List all possible samples and compute the mean of each sample.


d. Construct a frequency distribution of the sample means obtained in step 2 including 𝑥̅; 𝑓; 𝑃(𝑥̅); ̅𝑥 ⋅ 𝑃(𝑥̅); ̅𝑥 2 ⋅ 𝑃(𝑥̅); Σ𝑃(𝑥̅); Σ𝑥̅⋅ 𝑃(𝑥̅) 𝑎𝑛𝑑 Σ𝑥̅ 2 ⋅ 𝑃(𝑥̅).


1
Expert's answer
2022-05-12T09:21:42-0400

We have population values 6,9,12,15,18,21, population size N=6 and sample size n=3.

Mean of population (μ)(\mu) = 6+9+12+15+18+216=13.5\dfrac{6+9+12+15+18+21}{6}=13.5

Variance of population 


σ2=Σ(xixˉ)2n=16(56.25+20.25+2.25\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{6}(56.25+20.25+2.25


+2.25+20.25+6.25)=26.25+2.25+20.25+6.25)=26.25

σ=σ2=26.255.123475\sigma=\sqrt{\sigma^2}=\sqrt{26.25}\approx5.123475

a. Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.


b. The number of possible samples which can be drawn without replacement is NCn=6C3=20.^{N}C_n=^{6}C_3=20.


c.


noSampleSamplemean (xˉ)16,9,12926,9,151036,9,181146,9,211256,12,151166,12,181276,12,211386,15,181396,15,2114106,18,2115119,12,1512129,12,1813139,12,2114149,15,1814159,15,2115169,18,21161712,15,18151812,15,21161912,18,21172015,18,2118\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 6,9,12 & 9 \\ \hdashline 2 & 6,9,15 & 10 \\ \hdashline 3 & 6,9,18 & 11 \\ \hdashline 4 & 6,9,21 & 12 \\ \hdashline 5 & 6,12,15 & 11 \\ \hdashline 6 & 6,12,18 & 12 \\ \hdashline 7 & 6,12,21 & 13 \\ \hdashline 8 & 6,15,18 & 13 \\ \hdashline 9 & 6,15,21 & 14 \\ \hdashline 10 & 6,18,21 & 15 \\ \hdashline 11 & 9,12,15 & 12 \\ \hdashline 12 & 9,12,18 & 13 \\ \hdashline 13 & 9,12,21 & 14 \\ \hdashline 14 & 9,15,18 & 14 \\ \hdashline 15 & 9,15,21 & 15 \\ \hdashline 16 & 9,18,21 & 16 \\ \hdashline 17 & 12,15,18 & 15 \\ \hdashline 18 & 12,15,21 & 16 \\ \hdashline 19 & 12,18,21 & 17 \\ \hdashline 20 & 15,18,21 & 18 \\ \hdashline \end{array}



d.


Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)91/209/2081/20101/2010/20100/20112/2022/20242/20123/2036/20432/20133/2039/20507/20143/2042/20588/20153/2045/20675/20162/2032/20512/20171/2017/20289/20181/2018/20324/20\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 9 & 1/20 & 9/20 & 81/20 \\ \hdashline 10 & 1/20&10/20 & 100/20 \\ \hdashline 11 & 2/20 & 22/20 & 242/20 \\ \hdashline 12 & 3/20& 36/20 & 432/20 \\ \hdashline 13 & 3/20& 39/20 & 507/20 \\ \hdashline 14 & 3/20& 42/20 & 588/20 \\ \hdashline 15 & 3/20& 45/20 & 675/20 \\ \hdashline 16 & 2/20& 32/20 & 512/20 \\ \hdashline 17 & 1/20& 17/20 & 289/20 \\ \hdashline 18 & 1/20& 18/20 & 324/20 \\ \hdashline \end{array}



Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=27020=13.5=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{270}{20}=13.5=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=375020(13.5)2=5.25=σ2n(NnN1)=\dfrac{3750}{20}-(13.5)^2=5.25= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=5.252.291288\sigma_{\bar{X}}=\sqrt{5.25}\approx2.291288


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS