Define the following theorems with respect to a random vector
i) Central limit theorem
ii) Weak law of large numbers
1
Expert's answer
2022-05-11T12:11:40-0400
i). Central limit theorem: Let X1,X2,X3,…,Xn be independent and identically distributed random variables with expected value E[Xi]=μ<∞ and variance Var[Xi]=σ2<∞. Denote Xˉ=nX1+X2+…+Xn, Zn=nσXˉ−μ=nσX1+X2+…+Xn−nμ. Then, limn→∞P(Zn≤x)=F(x), where F(x) is the cumulative distribution function of the standard normal distribution. I.e., F(x)=2π1∫−∞xe−2t2dt.
ii). Weak law of large numbers: Let X1,X2,X3,…,Xn be independent and identically distributed random variables with expected value E[Xi]=μ<∞ and variance Var[Xi]=σ2<∞. Denote Xˉ=nX1+X2+…+Xn Then, for any ε>0, limn→∞P(∣Xˉ−μ∣≥ε)=0.
Comments
Leave a comment