Answer to Question #339464 in Statistics and Probability for Mwangi

Question #339464

Define the following theorems with respect to a random vector

i) Central limit theorem

ii) Weak law of large numbers


1
Expert's answer
2022-05-11T12:11:40-0400

i). Central limit theorem: Let X1,X2,X3,,XnX_1,X_2,X_3,\ldots,X_n be independent and identically distributed random variables with expected value E[Xi]=μ<E[X_i]=\mu<\infty and variance Var[Xi]=σ2<Var[X_i]=\sigma^2<\infty. Denote Xˉ=X1+X2++Xnn\bar{X}=\frac{X_1+X_2+\ldots+X_n}{n}, Zn=Xˉμσn=X1+X2++XnnμnσZ_n=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{X_1+X_2+\ldots+X_n-n\mu}{\sqrt{n}\sigma}. Then, limnP(Znx)=F(x)\lim_{n\rightarrow\infty}P(Z_n\leq x)=F(x), where F(x)F(x) is the cumulative distribution function of the standard normal distribution. I.e., F(x)=12πxet22dt.F(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^xe^{-\frac{t^2}{2}}dt.

ii). Weak law of large numbers: Let X1,X2,X3,,XnX_1,X_2,X_3,\ldots,X_n be independent and identically distributed random variables with expected value E[Xi]=μ<E[X_i]=\mu<\infty and variance Var[Xi]=σ2<Var[X_i]=\sigma^2<\infty. Denote Xˉ=X1+X2++Xnn\bar{X}=\frac{X_1+X_2+\ldots+X_n}{n} Then, for any ε>0\varepsilon>0, limnP(Xˉμε)=0.\lim_{n\rightarrow\infty}P(|\bar{X}-\mu|\geq\varepsilon)=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment