Answer to Question #338597 in Statistics and Probability for Ken

Question #338597

Let X, Y, Z have joint probability distribution function





f(x , y , z) = { k(x^2+ yz), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1



0, elsewhere





Find



(i) the value of k.



(ii) the conditional expectation of Z given X= x,Y= y

1
Expert's answer
2022-05-11T17:44:44-0400

The following condition must be satisfied: 010101f(x,y,z)dxdydz=1\int_0^1\int_0^1\int_0^1f(x,y,z)dxdydz=1.

Compute the left side of the latter: 010101f(x,y,z)dxdydz=010101k(x2+yz)dxdydz=k0101(13x3+xyz)01dydz=k0101(13+yz)dydz=k01(13y+12y2z)01dz=k01(13+12z)dz=k(13z+14z2)01=k(13+14)=712k.\int_0^1\int_0^1\int_0^1f(x,y,z)dxdydz=\int_0^1\int_0^1\int_0^1k(x^2+yz)dxdydz=k\int_0^1\int_0^1(\frac13x^3+xyz)|_0^1dydz=k\int_0^1\int_0^1(\frac13+yz)dydz=k\int_0^1|(\frac13y+\frac12y^2z)|_0^1dz=k\int_0^1(\frac13+\frac12z)dz=k(\frac13z+\frac14z^2)|_0^1=k(\frac13+\frac14)=\frac{7}{12}k.

(i) From the latter we find that: k=127k=\frac{12}{7}.

(ii) The aim is to find: E(ZX=x,Y=y)E(Z|X=x,Y=y). Using the definition of conditional expectation we get: E(ZX=x,Y=y)=01zfZX,Y(zx,y)dz=1fX,Y(x,y)01zf(z,x,y)dzE(Z|X=x,Y=y)=\int_{0}^{1}zf_{Z|X,Y}(z|x,y)dz=\frac{1}{f_{X,Y}(x,y)}\int_{0}^{1}zf(z,x,y)dz.

fX,Y(x,y)=01k(x2+yz)dz=k(x2z+12yz2)01=k(x2+12y).f_{X,Y}(x,y)=\int_{0}^{1}k(x^2+yz)dz=k(x^2z+\frac12yz^2)|_0^1=k(x^2+\frac12y).

01zf(z,x,y)dz=01k(x2z+yz2)dz=k(12x2+13y)\int_{0}^{1}zf(z,x,y)dz=\int_{0}^{1}k(x^2z+yz^2)dz=k(\frac12x^2+\frac13y)

We get: E(ZX=x,Y=y)=12x2+13yx2+12yE(Z|X=x,Y=y)=\frac{\frac12x^2+\frac13y}{x^2+\frac12y}.

Answer: (i) k=127k=\frac{12}{7} (ii) E(ZX=x,Y=y)=12x2+13yx2+12yE(Z|X=x,Y=y)=\frac{\frac12x^2+\frac13y}{x^2+\frac12y}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment