The following condition must be satisfied: ∫01∫01∫01f(x,y,z)dxdydz=1.
Compute the left side of the latter: ∫01∫01∫01f(x,y,z)dxdydz=∫01∫01∫01k(x2+yz)dxdydz=k∫01∫01(31x3+xyz)∣01dydz=k∫01∫01(31+yz)dydz=k∫01∣(31y+21y2z)∣01dz=k∫01(31+21z)dz=k(31z+41z2)∣01=k(31+41)=127k.
(i) From the latter we find that: k=712.
(ii) The aim is to find: E(Z∣X=x,Y=y). Using the definition of conditional expectation we get: E(Z∣X=x,Y=y)=∫01zfZ∣X,Y(z∣x,y)dz=fX,Y(x,y)1∫01zf(z,x,y)dz.
fX,Y(x,y)=∫01k(x2+yz)dz=k(x2z+21yz2)∣01=k(x2+21y).
∫01zf(z,x,y)dz=∫01k(x2z+yz2)dz=k(21x2+31y)
We get: E(Z∣X=x,Y=y)=x2+21y21x2+31y.
Answer: (i) k=712 (ii) E(Z∣X=x,Y=y)=x2+21y21x2+31y
Comments
Leave a comment