Let X, Y, Z have joint probability distribution function
f(x , y , z) = { k(x^2+ yz), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1
0, elsewhere
Find
(i) the value of k.
(ii) the conditional expectation of Z given X= x,Y= y
The following condition must be satisfied: "\\int_0^1\\int_0^1\\int_0^1f(x,y,z)dxdydz=1".
Compute the left side of the latter: "\\int_0^1\\int_0^1\\int_0^1f(x,y,z)dxdydz=\\int_0^1\\int_0^1\\int_0^1k(x^2+yz)dxdydz=k\\int_0^1\\int_0^1(\\frac13x^3+xyz)|_0^1dydz=k\\int_0^1\\int_0^1(\\frac13+yz)dydz=k\\int_0^1|(\\frac13y+\\frac12y^2z)|_0^1dz=k\\int_0^1(\\frac13+\\frac12z)dz=k(\\frac13z+\\frac14z^2)|_0^1=k(\\frac13+\\frac14)=\\frac{7}{12}k."
(i) From the latter we find that: "k=\\frac{12}{7}".
(ii) The aim is to find: "E(Z|X=x,Y=y)". Using the definition of conditional expectation we get: "E(Z|X=x,Y=y)=\\int_{0}^{1}zf_{Z|X,Y}(z|x,y)dz=\\frac{1}{f_{X,Y}(x,y)}\\int_{0}^{1}zf(z,x,y)dz".
"f_{X,Y}(x,y)=\\int_{0}^{1}k(x^2+yz)dz=k(x^2z+\\frac12yz^2)|_0^1=k(x^2+\\frac12y)."
"\\int_{0}^{1}zf(z,x,y)dz=\\int_{0}^{1}k(x^2z+yz^2)dz=k(\\frac12x^2+\\frac13y)"
We get: "E(Z|X=x,Y=y)=\\frac{\\frac12x^2+\\frac13y}{x^2+\\frac12y}".
Answer: (i) "k=\\frac{12}{7}" (ii) "E(Z|X=x,Y=y)=\\frac{\\frac12x^2+\\frac13y}{x^2+\\frac12y}"
Comments
Leave a comment