Answer to Question #338274 in Statistics and Probability for peace boy

Question #338274

1.The waiting time, in hour, between successive speeders spotted by a radar units is a continuous random variable with cumulative distribution function

f(x)={(1-e^(-8x), if x>0,0 otherwise)

 derive the characteristic function of x and use it to find the mean of x


1
Expert's answer
2022-05-09T11:13:23-0400

The characteristic function has the form: φ(t)=E[eitX]\varphi(t)=E[e^{itX}]. We receive the following expression: φ(t)=+eitxp(x)dx\varphi(t)=\int_{-\infty}^{+\infty}e^{itx}p(x)dx, where tRt\in{\mathbb{R}}. p(x)p(x) is the probability density function. p(x)=f(x)=8e8xp(x)=f'(x)=8e^{-8x}, x>0x>0. For x<0x<0 the probability density function is . We get: φ(t)=80+eitx8xdx=8it8eitx8x0+=8it8\varphi(t)=8\int_{0}^{+\infty}e^{itx-8x}dx=\frac{8}{it-8}e^{itx-8x}|_0^{+\infty}=-\frac{8}{it-8}. It is known that: φ(t)tt=0=iE[X]\frac{\partial\varphi(t)}{\partial t}|_{t=0}=iE[X]. We get: φ(t)t=8i(it8)2\frac{\partial\varphi(t)}{\partial t}=\frac{8i}{(it-8)^2}. We receive: E[X]=18E[X]=\frac18.

Answer: E[X]=18.E[X]=\frac18.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment