Question #337742

The average time it takes a group of senior high school students to

complete a certain examination is 46.2 minutes. The standard deviation is

8 minutes. Assume that the variable is normally distributed.


What is the probability that a random selected college student will

complete the examination in less than 43 minutes?


1
Expert's answer
2022-05-06T12:36:56-0400

Suppose that XX is a random variable that has a normal distribution with parameters μ=46.2\mu=46.2 and σ=8\sigma=8. The respective probability density function is: p(x)=1σ2πe12(xμσ)2p(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12\left(\frac{x-\mu}{\sigma}\right)^2}. The aim is to find P(X43)P(X\leq43). We receive: P(X43)=431σ2πe12(xμσ)2dx0.3446P(X\leq43)=\int_{-\infty}^{43}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12\left(\frac{x-\mu}{\sigma}\right)^2}dx\approx0.3446 (it is rounded to 44 decimal places)

Answer: 0.34460.3446 (it is rounded to 44 decimal places)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS