μ=220 grams σ=25 grams
If a mango is selected at random, what is the probability that its weight lies between 180 and 250 grams?
We have a normal distribution, μ=220,σ=25.\mu=220, \sigma=25.μ=220,σ=25.
Let's convert it to the standard normal distribution,
z=x−μσ.z=\cfrac{x-\mu}{\sigma}.z=σx−μ.
z1=180−22025=−1.60;z2=250−22025=1.20;P(180<X<250)==P(−1.60<Z<1.20)==P(Z<1.20)−P(Z<−1.60)==0.8849−0.0548=0.8301 (from z-table).z_1=\cfrac{180-220}{25}=-1.60;\\ z_2=\cfrac{250-220}{25}=1.20;\\ P(180<X<250)=\\ =P(-1.60<Z<1.20)=\\ =P(Z<1.20)-P(Z<-1.60)=\\ =0.8849-0.0548=0.8301\\ \text{ (from z-table)}.z1=25180−220=−1.60;z2=25250−220=1.20;P(180<X<250)==P(−1.60<Z<1.20)==P(Z<1.20)−P(Z<−1.60)==0.8849−0.0548=0.8301 (from z-table).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments