Solve the given problems.
1. A population consists of the four numbers 1, 2, 4 and 5. List all the possible
samples of size n = 2
which can be drawn with replacement from the population.
Find the following:
a. Population mean
b. Population variance
c. Population standard deviation.
d. Mean of the sampling distribution of sample means
e. Variance of the sampling distribution of sample means
f. Standard deviation of the sampling distribution of sample means
a. We have population values 1,2,4 and 5 population size N=4 and sample size n=2.
Mean of population "(\\mu)" =
"\\dfrac{1+2+4+5}{4}=3"b. Variance of population
"=\\dfrac{4+1+1+4}{4}=\\dfrac{5}{2}"
c.
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{5}{2}}\\approx1.5811"d. The number of possible samples which can be drawn with replacement is "2^4=16."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 &1,1 & 2\/2 \\\\\n \\hdashline\n 2 & 1,2 & 3\/2 \\\\\n \\hdashline\n 3 & 1,4 & 5\/2 \\\\\n \\hdashline\n 4 & 1,5 & 6\/2 \\\\\n \\hdashline\n 5 & 2,1 & 3\/2 \\\\\n \\hdashline\n 6 & 2,2 & 4\/2 \\\\\n \\hdashline\n 7 & 2,4 & 6\/2 \\\\\n \\hdashline\n 8 & 2,5 & 7\/2 \\\\\n \\hdashline\n 9 & 4,1 & 5\/2 \\\\\n \\hdashline\n 10 & 4,2 & 6\/2 \\\\\n \\hdashline\n 11 & 4,4 & 8\/2 \\\\\n \\hdashline\n 12 & 4,5 & 9\/2 \\\\\n \\hdashline\n 13 & 5,1 & 6\/2 \\\\\n \\hdashline\n 14 & 5,2 & 7\/2 \\\\\n \\hdashline\n 15 & 5,4 & 9\/2 \\\\\n \\hdashline\n 16 & 5,5 & 10\/2 \\\\\n \\hdashline\n\n\\end{array}"b.
Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=3=\\mu"e.The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{656}{64}-(3)^2=\\dfrac{162}{40}=\\dfrac{5}{4}= \\dfrac{\\sigma^2}{n}"
f.
"\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{5}{4}}\\approx1.1180"
Comments
Leave a comment