Given the population 3 5,7,9,11,13
How many samples can be made from the population with sample size of 3?
Calculate the mean of the sampling distribution
Compute the variance o the sampling distribution
The number of possible samples which can be selected without replacement is
"\\begin{pmatrix}\n N \\\\\n n\n\\end{pmatrix}=\\cfrac{N! } {n! \\cdot(N-n)! }=\\\\\n=\\cfrac{6! } {3! \\cdot3! }=\\cfrac{4\\cdot5\\cdot6}{2\\cdot3}=20."
Population mean:
"\\mu=\\cfrac{3+5+7+9+11+13}{6}=8."
Population variance:
"\\sigma^2=\\sum(x_i-\\mu)^2\\cdot P(x_i),"
"X-\\mu=\\\\\n=\\begin{Bmatrix}\n 3-8,5-8,7-8,9-8,11-8,13-8\n\\end{Bmatrix}="
"=\\begin{Bmatrix}\n-5, - 3,-1,1,3,5\n\\end{Bmatrix},"
"\\sigma^2=(-5)^2\\cdot \\cfrac{1}{6}+(-3)^2\\cdot \\cfrac{1}{6}+\\\\\n+(-1)^2\\cdot \\cfrac{1}{6}+1^2\\cdot \\cfrac{1}{6}+3^2\\cdot \\cfrac{1}{6}+5^2\\cdot \\cfrac{1}{6}=11.667."
Mean of the sampling distribution of sample means:
"\\mu_{\\bar x} =\\mu=8."
Variance of the sampling distribution of sample means:
"\\sigma^2_{\\bar x}=\\cfrac{\\sigma^2}{n}=\\cfrac{11.667}{3}=3.889."
Comments
Leave a comment