Question #336235



A. The following are the heights of four students in centimeters. Suppose


samples of size 2 are taken from this population of four students.


STUDENTS | HEIGHT(in cm)



Cardo 125



Alyana 120



Joaquin 130



Flora 110



a. Compute the mean of the population


b. Compute the mean of the sampling distribution of the sample means

1
Expert's answer
2022-05-02T14:43:29-0400

We have population values 125, 120, 130, 110, population size N=4 and sample size n=2.

Mean of population (μ)(\mu) = 

125+120+130+1104=121.25\dfrac{125+120+130+110}{4}=121.25


The number of possible samples which can be drawn without replacement is NCn=4C2=6.^{N}C_n=^{4}C_2=6.

noSampleSamplemean (xˉ)1125,120245/22125,130255/23125,110235/24120,130250/25120,110230/26130,110240/2\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 125,120 & 245/2 \\ \hdashline 2 & 125, 130 & 255/2 \\ \hdashline 3 & 125,110 & 235/2 \\ \hdashline 4 & 120,130 & 250/2 \\ \hdashline 5 & 120,110 & 230/2 \\ \hdashline 6 & 130,110 & 240/2 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)230/21/6230/12235/21/6235/12240/21/6240/12245/21/6245/12250/21/6250/12255/21/6255/12\def\arraystretch{1.5} \begin{array}{c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) \\ \hline 230/2 & 1/6 & 230/12\\ \hdashline 235/2 & 1/6 & 235/12\\ \hdashline 240/2 & 1/6 & 240/12\\ \hdashline 245/2 & 1/6 & 245/12 \\ \hdashline 250/2 & 1/6 & 250/12\\ \hdashline 255/2 & 1/6 & 255/12 \\ \hdashline \end{array}


Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=121.25=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=121.25=\mu




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS