Activity 2. Construct Me!
A population consists of the five numbers 2, 3, 6, 8 and 11.
Consider samples of size 2 that can be drawn from this population.
a. List all the possible samples and the corresponding mean.
Sample
Mean
19
b. Construct the sampling distribution of the sample means.
Sample Mean
Probability
Frequency
c. Draw a histogram of the sampling distribution of the
meets.
a. We have population values 2, 3, 6, 8 and 11 population size N=5 and sample size n=2.
Mean of population "(\\mu)" =
"\\dfrac{2+3+6+8+11}{5}=6"Variance of population
"=\\dfrac{16+9+0+4+25}{5}=10.8"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{10.8}\\approx3.2863"
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_2=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 2,3 & 5\/2 \\\\\n \\hdashline\n 2 & 2,6 & 8\/2 \\\\\n \\hdashline\n 3 & 2,8 & 10\/2 \\\\\n \\hdashline\n 4 & 2,11 & 13\/2 \\\\\n \\hdashline\n 5 & 3,6 & 9\/2 \\\\\n \\hdashline\n 6 & 3,8 & 11\/2 \\\\\n \\hdashline\n 7 & 3,11 & 14\/2 \\\\\n \\hdashline\n 8 & 6,8 & 14\/2 \\\\\n \\hdashline\n 9 & 6,11 & 17\/2 \\\\\n \\hdashline\n 10 & 8,11 & 19\/2 \\\\\n \\hdashline\n\\end{array}"b.
Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=6=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{1602}{40}-(6)^2=\\dfrac{162}{40}=\\dfrac{81}{20}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{81}{20}}\\approx2.01246"
c.
Comments
Leave a comment