Question #334988

The following are the ages of 8 jeepney passengers in a waiting shed: 12, 15, 18, 19, 21, 23, 35, and 40. The sample with size 7 is chosen to ride in the current jeepney. Determine the number of possible samples with size 7

1
Expert's answer
2022-04-29T14:49:53-0400

We have population values 12, 15, 18, 19, 21, 23, 35, and 40 population size N=8 and sample size n=7.

Mean of population (μ)(\mu) = 

12+15+18+19+21+23+35+408=22.875\dfrac{12+15+18+19+21+23+35+40}{8}=22.875


Variance of population 


σ2=Σ(xixˉ)2n=82.859375\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=82.859375


σ=σ2=6\sigma=\sqrt{\sigma^2}=\sqrt{6}

The number of possible samples which can be drawn without replacement is NCn=8C7=8.^{N}C_n=^{8}C_7=8.

noSampleSamplemean (xˉ)112,15,18,19,21,23,35143/7212,15,18,19,21,23,40148/7312,18,19,21,23,35,40168/7412,15,19,21,23,35,40165/7512,15,18,21,23,35,40164/7612,15,18,19,23,35,40162/7712,15,18,19,21,35,40160/7815,18,19,21,23,35,40171/7\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 12, 15, 18, 19, 21, 23, 35 & 143/7 \\ \hdashline 2 & 12, 15, 18, 19, 21, 23, 40 & 148/7 \\ \hdashline 3 & 12, 18, 19, 21, 23, 35,40 & 168/7 \\ \hdashline 4 & 12, 15, 19, 21, 23, 35, 40 & 165/7 \\ \hdashline 5 & 12, 15, 18, 21, 23, 35, 40 & 164/7 \\ \hdashline 6 & 12, 15,18, 19, 23, 35,40 & 162/7 \\ \hdashline 7 & 12,15, 18, 19, 21, 35,40 & 160/7 \\ \hdashline 8 & 15, 18, 19, 21, 23, 35, 40 & 171/7 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)143/71/8143/5620449/392148/71/8148/5621904/392168/71/8168/5628224/392165/71/8165/5627225/392164/71/8164/5626896/392162/71/8162/5626244/392160/71/8160/5625600/392171/71/8171/5629241/392\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) &\bar{X}^2 f(\bar{X})\\ \hline 143/7 & 1/8 & 143/56 & 20449/392\\ \hdashline 148/7 & 1/8 & 148/56 & 21904/392\\ \hdashline 168/7 & 1/8 & 168/56 & 28224/392\\ \hdashline 165/7 & 1/8 & 165/56 & 27225/392 \\ \hdashline 164/7 & 1/8 & 164/56 & 26896/392\\ \hdashline 162/7 & 1/8 & 162/56 & 26244/392 \\ \hdashline 160/7 & 1/8 & 160/56 & 25600/392 \\ \hdashline 171/7 & 1/8 & 171/56 & 29241/392 \\ \hdashline \end{array}


Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=22.875=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=22.875=\mu


The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=205783392(1838)2=53033136=σ2n(NnN1)=\dfrac{205783}{392}-(\dfrac{183}{8})^2=\dfrac{5303}{3136}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=530331361.3004\sigma_{\bar{X}}=\sqrt{\dfrac{5303}{3136}}\approx1.3004


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS