We have population values 4, 5, 8, 12, 9, 12, population size N=6 and sample size n=4.
a. Mean of population ( μ ) (\mu) ( μ ) = 4 + 5 + 8 + 12 + 9 + 12 6 = 25 / 3 \dfrac{4+5+8+12+9+12}{6}=25/3 6 4 + 5 + 8 + 12 + 9 + 12 = 25/3
b. Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 N = 86 9 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=\dfrac{86}{9} σ 2 = N Σ ( x i − x ˉ ) 2 = 9 86
σ = σ 2 = 86 9 = 86 3 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{86}{9}}=\dfrac{\sqrt{86}}{3} σ = σ 2 = 9 86 = 3 86
c. The number of possible samples which can be drawn without replacement is N C n = 6 C 4 = 15. ^{N}C_n=^{6}C_4=15. N C n = 6 C 4 = 15.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 4 , 5 , 8 , 12 29 / 4 2 4 , 5 , 8 , 9 26 / 4 3 4 , 5 , 8 , 12 29 / 4 4 4 , 5 , 12 , 9 30 / 4 5 4 , 5 , 12 , 12 33 / 4 6 4 , 5 , 9 , 12 30 / 4 7 4 , 8 , 12 , 9 33 / 4 8 4 , 8 , 12 , 12 36 / 4 9 4 , 8 , 9 , 12 33 / 4 10 4 , 12 , 9 , 12 37 / 4 11 5 , 8 , 12 , 9 34 / 4 12 5 , 8 , 12 , 12 37 / 4 13 5 , 8 , 9 , 12 34 / 4 14 5 , 12 , 9 , 12 38 / 4 15 8 , 12 , 9 , 12 41 / 4 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 4,5,8,12 & 29/4 \\
\hdashline
2 & 4,5,8,9 & 26/4 \\
\hdashline
3 & 4,5,8,12 & 29/4 \\
\hdashline
4 & 4,5,12,9 & 30/4 \\
\hdashline
5 & 4,5,12,12 & 33/4 \\
\hdashline
6 & 4,5,9,12 & 30/4 \\
\hdashline
7 & 4,8,12,9 & 33/4 \\
\hdashline
8 & 4,8,12,12 & 36/4 \\
\hdashline
9 & 4,8,9,12 & 33/4 \\
\hdashline
10 & 4,12,9,12 & 37/4 \\
\hdashline
11 & 5,8,12,9 & 34/4 \\
\hdashline
12 & 5,8,12,12 & 37/4 \\
\hdashline
13 & 5,8,9,12 & 34/4 \\
\hdashline
14 & 5,12,9,12 & 38/4 \\
\hdashline
15 & 8,12,9,12 & 41/4 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S am pl e 4 , 5 , 8 , 12 4 , 5 , 8 , 9 4 , 5 , 8 , 12 4 , 5 , 12 , 9 4 , 5 , 12 , 12 4 , 5 , 9 , 12 4 , 8 , 12 , 9 4 , 8 , 12 , 12 4 , 8 , 9 , 12 4 , 12 , 9 , 12 5 , 8 , 12 , 9 5 , 8 , 12 , 12 5 , 8 , 9 , 12 5 , 12 , 9 , 12 8 , 12 , 9 , 12 S am pl e m e an ( x ˉ ) 29/4 26/4 29/4 30/4 33/4 30/4 33/4 36/4 33/4 37/4 34/4 37/4 34/4 38/4 41/4
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 26 / 4 1 / 15 26 / 60 676 / 240 29 / 4 2 / 15 58 / 60 1682 / 240 30 / 4 2 / 15 60 / 60 1800 / 240 33 / 4 3 / 15 99 / 60 3267 / 240 34 / 4 2 / 15 68 / 60 2312 / 240 36 / 4 1 / 15 36 / 60 1296 / 240 37 / 4 2 / 15 74 / 60 2738 / 240 38 / 4 1 / 15 38 / 60 1444 / 240 41 / 4 1 / 15 41 / 60 1681 / 240 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) &\bar{X}^2 f(\bar{X})
\\ \hline
26/4 & 1/15 & 26/60 & 676/240 \\
\hdashline
29/4 & 2/15 & 58/60 & 1682/240 \\
\hdashline
30/4 & 2/15 & 60/60 & 1800/240 \\
\hdashline
33/4 & 3/15 & 99/60 & 3267/240 \\
\hdashline
34/4 & 2/15 & 68/60 & 2312/240 \\
\hdashline
36/4 & 1/15 & 36/60 & 1296/240 \\
\hdashline
37/4 & 2/15 & 74/60 & 2738/240 \\
\hdashline
38/4 & 1/15 & 38/60 & 1444/240 \\
\hdashline
41/4 & 1/15 & 41/60 & 1681/240 \\
\hdashline
\end{array} X ˉ 26/4 29/4 30/4 33/4 34/4 36/4 37/4 38/4 41/4 f ( X ˉ ) 1/15 2/15 2/15 3/15 2/15 1/15 2/15 1/15 1/15 X ˉ f ( X ˉ ) 26/60 58/60 60/60 99/60 68/60 36/60 74/60 38/60 41/60 X ˉ 2 f ( X ˉ ) 676/240 1682/240 1800/240 3267/240 2312/240 1296/240 2738/240 1444/240 1681/240
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 25 / 3 \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=25/3 μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 25/3
d. The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 16896 240 − ( 25 3 ) 2 = 43 45 =\dfrac{16896}{240}-(\dfrac{25}{3})^2=\dfrac{43}{45} = 240 16896 − ( 3 25 ) 2 = 45 43
e.
σ X ˉ = 43 45 ≈ 0.9775 \sigma_{\bar{X}}=\sqrt{\dfrac{43}{45}}\approx0.9775 σ X ˉ = 45 43 ≈ 0.9775
f.
μ X ˉ = E ( X ˉ ) = 25 / 3 = μ \mu_{\bar{X}}=E(\bar{X})=25/3=\mu μ X ˉ = E ( X ˉ ) = 25/3 = μ
V a r ( X ˉ ) = σ X ˉ 2 = 43 45 = σ 2 n ( N − n N − 1 ) Var(\bar{X})=\sigma^2_{\bar{X}}=\dfrac{43}{45}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) Va r ( X ˉ ) = σ X ˉ 2 = 45 43 = n σ 2 ( N − 1 N − n )
Comments