A population consisting of 6 measurements 4 ̧ 5 ̧ 8 ̧ 12 ̧ 9 and 12.
a. Solve for the mean of the population.
b. Solve for the variance of the population.
c. Suppose samples of size 4 are to be taken from this population ̧ what is
the mean of the sampling distribution?
d. What is its variance of the sampling distribution?
e. What is the standard error of the mean?
f. Determine whether the estimate for the population mean is good or bad.
Support your answer.
We have population values 4, 5, 8, 12, 9, 12, population size N=6 and sample size n=4.
a. Mean of population "(\\mu)" = "\\dfrac{4+5+8+12+9+12}{6}=25\/3"
b. Variance of population
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{86}{9}}=\\dfrac{\\sqrt{86}}{3}"
c. The number of possible samples which can be drawn without replacement is "^{N}C_n=^{6}C_4=15."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 4,5,8,12 & 29\/4 \\\\\n \\hdashline\n 2 & 4,5,8,9 & 26\/4 \\\\\n \\hdashline\n 3 & 4,5,8,12 & 29\/4 \\\\\n \\hdashline\n 4 & 4,5,12,9 & 30\/4 \\\\\n \\hdashline\n 5 & 4,5,12,12 & 33\/4 \\\\\n \\hdashline\n 6 & 4,5,9,12 & 30\/4 \\\\\n \\hdashline\n 7 & 4,8,12,9 & 33\/4 \\\\\n \\hdashline\n 8 & 4,8,12,12 & 36\/4 \\\\\n \\hdashline\n 9 & 4,8,9,12 & 33\/4 \\\\\n \\hdashline\n 10 & 4,12,9,12 & 37\/4 \\\\\n \\hdashline\n 11 & 5,8,12,9 & 34\/4 \\\\\n \\hdashline\n 12 & 5,8,12,12 & 37\/4 \\\\\n \\hdashline\n 13 & 5,8,9,12 & 34\/4 \\\\\n \\hdashline\n 14 & 5,12,9,12 & 38\/4 \\\\\n \\hdashline\n 15 & 8,12,9,12 & 41\/4 \\\\\n \\hdashline\n\\end{array}"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=25\/3"d. The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{16896}{240}-(\\dfrac{25}{3})^2=\\dfrac{43}{45}"
e.
"\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{43}{45}}\\approx0.9775"
f.
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\dfrac{43}{45}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})"
Comments
Leave a comment