Question #334559

The article “A Thin-Film Oxygen Uptake Test for the Evaluation of Automotive Crankcase Lubricants” reported the following data on oxidation-induction time (min) for various commercial oils: 87 103 130 160 180 195 132 145 211 105 145 a. Calculate the sample variance and standard deviation. b. If the observations were reexpressed in hours, what would be the resulting values of the sample variance and sample standard deviation? Answer without actually performing the reexpression.


1
Expert's answer
2022-04-28T15:44:18-0400

Sample mean

xˉ=111(87+103+130+160+180\bar{x}=\dfrac{1}{11}(87+ 103+ 130 +160+ 180

 

+195+132+145+211+105+145)=159311+195 +132+ 145+ 211+ 105+ 145)=\dfrac{1593}{11}

 Sample variance


Var(X)=s2=Σ(xixˉ)2n1Var(X)=s^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n-1}


=1111((87159311)2+(103159311)2=\dfrac{1}{11-1}((87-\dfrac{1593}{11})^2+(103-\dfrac{1593}{11})^2

+(130159311)2+(160159311)2+(130-\dfrac{1593}{11})^2+(160-\dfrac{1593}{11})^2

+(180159311)2+(195159311)2+(180-\dfrac{1593}{11})^2+(195-\dfrac{1593}{11})^2

+(132159311)2+(145159311)2+(132-\dfrac{1593}{11})^2+(145-\dfrac{1593}{11})^2

+(211159311)2+(105159311)2+(211-\dfrac{1593}{11})^2+(105-\dfrac{1593}{11})^2

+(145159311)2)542.763636 min2+(145-\dfrac{1593}{11})^2)\approx542.763636\ min^2

s=s2=542.76363623.297288 mins=\sqrt{s^2}=\sqrt{542.763636}\approx 23.297288\ min



b.


Var(cX)=sh2=c2Var(X)Var(cX)=s_h^2=c^2Var(X)

Var(Y)=(160)2Var(X)Var(Y)=(\dfrac{1}{60})^2Var(X)

=13600(542.763636)=0.1507677 hours2=\dfrac{1}{3600}(542.763636)=0.1507677\ hours^2

sh=sh2=160s0.388288 hourss_h=\sqrt{s_h^2}=\dfrac{1}{60}s\approx0.388288\ hours


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS