A population consist of numbers 2 5 6 8 and 9, construct the sampling distribution of sample mean with sample size of 3. make a histogram of the distribution.
We have population values 2,5,6,8,9, population size N=5 and sample size n=3.
Mean of population "(\\mu)" = "\\dfrac{2+5+6+8+9}{5}=6"
Variance of populationÂ
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{6}"
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_3=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 2,5,6 & 13\/3 \\\\\n \\hdashline\n 2 & 2,5,8 & 15\/3 \\\\\n \\hdashline\n 3 & 2,5,9 & 16\/3 \\\\\n \\hdashline\n 4 & 2,6,8 & 16\/3 \\\\\n \\hdashline\n 5 & 2,6,9 & 17\/3 \\\\\n \\hdashline\n 6 & 2,8,9 & 19\/3 \\\\\n \\hdashline\n 7 & 5,6,8 & 19\/3 \\\\\n \\hdashline\n 8 & 5,6,9 & 20\/3 \\\\\n \\hdashline\n 9 & 5,8,9 & 22\/3 \\\\\n \\hdashline\n 10 & 6,8,9 & 23\/3 \\\\\n \\hdashline \n\\end{array}"Mean of sampling distributionÂ
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=6=\\mu"The variance of sampling distributionÂ
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=37-(6)^2=1= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{1}=1"
Comments
Leave a comment