Question #334523

A population consist of numbers 2 5 6 8 and 9, construct the sampling distribution of sample mean with sample size of 3. make a histogram of the distribution.


1
Expert's answer
2022-04-28T13:18:43-0400

We have population values 2,5,6,8,9, population size N=5 and sample size n=3.

Mean of population (μ)(\mu) = 2+5+6+8+95=6\dfrac{2+5+6+8+9}{5}=6

Variance of population 


σ2=Σ(xixˉ)2n=16+1+0+4+95=6\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{16+1+0+4+9}{5}=6


σ=σ2=6\sigma=\sqrt{\sigma^2}=\sqrt{6}

The number of possible samples which can be drawn without replacement is NCn=5C3=10.^{N}C_n=^{5}C_3=10.

noSampleSamplemean (xˉ)12,5,613/322,5,815/332,5,916/342,6,816/352,6,917/362,8,919/375,6,819/385,6,920/395,8,922/3106,8,923/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 2,5,6 & 13/3 \\ \hdashline 2 & 2,5,8 & 15/3 \\ \hdashline 3 & 2,5,9 & 16/3 \\ \hdashline 4 & 2,6,8 & 16/3 \\ \hdashline 5 & 2,6,9 & 17/3 \\ \hdashline 6 & 2,8,9 & 19/3 \\ \hdashline 7 & 5,6,8 & 19/3 \\ \hdashline 8 & 5,6,9 & 20/3 \\ \hdashline 9 & 5,8,9 & 22/3 \\ \hdashline 10 & 6,8,9 & 23/3 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)13/31/1013/30169/9015/31/1015/30225/9016/32/1032/30512/9017/31/1017/30289/9019/32/1038/30722/9020/31/1020/30400/9022/31/1022/30484/9023/31/1023/30529/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 13/3 & 1/10 & 13/30 & 169/90 \\ \hdashline 15/3 & 1/10 & 15/30 & 225/90 \\ \hdashline 16/3 & 2/10 & 32/30 & 512/90 \\ \hdashline 17/3 & 1/10 & 17/30 & 289/90 \\ \hdashline 19/3 & 2/10 & 38/30 & 722/90 \\ \hdashline 20/3 & 1/10 & 20/30 & 400/90 \\ \hdashline 22/3 & 1/10 & 22/30 & 484/90 \\ \hdashline 23/3 & 1/10 & 23/30 & 529/90 \\ \hdashline \end{array}



Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=6=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=6=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=37(6)2=1=σ2n(NnN1)=37-(6)^2=1= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=1=1\sigma_{\bar{X}}=\sqrt{1}=1

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS