We have population values 2,5,6,8,9, population size N=5 and sample size n=3.
Mean of population ( μ ) (\mu) ( μ ) = 2 + 5 + 6 + 8 + 9 5 = 6 \dfrac{2+5+6+8+9}{5}=6 5 2 + 5 + 6 + 8 + 9 = 6
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 16 + 1 + 0 + 4 + 9 5 = 6 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{16+1+0+4+9}{5}=6 σ 2 = n Σ ( x i − x ˉ ) 2 = 5 16 + 1 + 0 + 4 + 9 = 6
σ = σ 2 = 6 \sigma=\sqrt{\sigma^2}=\sqrt{6} σ = σ 2 = 6 The number of possible samples which can be drawn without replacement is N C n = 5 C 3 = 10. ^{N}C_n=^{5}C_3=10. N C n = 5 C 3 = 10.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 2 , 5 , 6 13 / 3 2 2 , 5 , 8 15 / 3 3 2 , 5 , 9 16 / 3 4 2 , 6 , 8 16 / 3 5 2 , 6 , 9 17 / 3 6 2 , 8 , 9 19 / 3 7 5 , 6 , 8 19 / 3 8 5 , 6 , 9 20 / 3 9 5 , 8 , 9 22 / 3 10 6 , 8 , 9 23 / 3 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 2,5,6 & 13/3 \\
\hdashline
2 & 2,5,8 & 15/3 \\
\hdashline
3 & 2,5,9 & 16/3 \\
\hdashline
4 & 2,6,8 & 16/3 \\
\hdashline
5 & 2,6,9 & 17/3 \\
\hdashline
6 & 2,8,9 & 19/3 \\
\hdashline
7 & 5,6,8 & 19/3 \\
\hdashline
8 & 5,6,9 & 20/3 \\
\hdashline
9 & 5,8,9 & 22/3 \\
\hdashline
10 & 6,8,9 & 23/3 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 S am pl e 2 , 5 , 6 2 , 5 , 8 2 , 5 , 9 2 , 6 , 8 2 , 6 , 9 2 , 8 , 9 5 , 6 , 8 5 , 6 , 9 5 , 8 , 9 6 , 8 , 9 S am pl e m e an ( x ˉ ) 13/3 15/3 16/3 16/3 17/3 19/3 19/3 20/3 22/3 23/3
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 13 / 3 1 / 10 13 / 30 169 / 90 15 / 3 1 / 10 15 / 30 225 / 90 16 / 3 2 / 10 32 / 30 512 / 90 17 / 3 1 / 10 17 / 30 289 / 90 19 / 3 2 / 10 38 / 30 722 / 90 20 / 3 1 / 10 20 / 30 400 / 90 22 / 3 1 / 10 22 / 30 484 / 90 23 / 3 1 / 10 23 / 30 529 / 90 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
13/3 & 1/10 & 13/30 & 169/90 \\
\hdashline
15/3 & 1/10 & 15/30 & 225/90 \\
\hdashline
16/3 & 2/10 & 32/30 & 512/90 \\
\hdashline
17/3 & 1/10 & 17/30 & 289/90 \\
\hdashline
19/3 & 2/10 & 38/30 & 722/90 \\
\hdashline
20/3 & 1/10 & 20/30 & 400/90 \\
\hdashline
22/3 & 1/10 & 22/30 & 484/90 \\
\hdashline
23/3 & 1/10 & 23/30 & 529/90 \\
\hdashline
\end{array} X ˉ 13/3 15/3 16/3 17/3 19/3 20/3 22/3 23/3 f ( X ˉ ) 1/10 1/10 2/10 1/10 2/10 1/10 1/10 1/10 X ˉ f ( X ˉ ) 13/30 15/30 32/30 17/30 38/30 20/30 22/30 23/30 X ˉ 2 f ( X ˉ ) 169/90 225/90 512/90 289/90 722/90 400/90 484/90 529/90
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 6 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=6=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 6 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 37 − ( 6 ) 2 = 1 = σ 2 n ( N − n N − 1 ) =37-(6)^2=1= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 37 − ( 6 ) 2 = 1 = n σ 2 ( N − 1 N − n )
σ X ˉ = 1 = 1 \sigma_{\bar{X}}=\sqrt{1}=1 σ X ˉ = 1 = 1
Comments