Question #334327

From a finite population consisting of digits 1, 4, 5, and 9, construct the


sampling distribution of the sample mean


a. With a sample size of 2


b. With a sample size of 3

1
Expert's answer
2022-04-28T05:24:49-0400

a. We have population values 1,4,5,9, population size N=4 and sample size n=2.

Mean of population (μ)(\mu) = 1+4+5+94=4.75\dfrac{1+4+5+9}{4}=4.75

Variance of population 


σ2=Σ(xixˉ)2n\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}


=14.0625+0.5625+0.0625+18.06254=8.1875=\dfrac{14.0625+0.5625+0.0625+18.0625}{4}=8.1875

σ=σ2=8.18752.8614\sigma=\sqrt{\sigma^2}=\sqrt{8.1875}\approx2.8614

The number of possible samples which can be drawn without replacement is NCn=4C2=6.^{N}C_n=^{4}C_2=6.

noSampleSamplemean (xˉ)11,42.521,5331,9544,54.554,96.565,97\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,4 & 2.5\\ \hdashline 2 & 1,5 & 3 \\ \hdashline 3 & 1,9 & 5 \\ \hdashline 4 & 4,5 & 4.5 \\ \hdashline 5 & 4,9 & 6.5 \\ \hdashline 6 & 5,9 & 7 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)2.51/62.5/66.25/631/63/69/64.51/64.5/620.25/651/65/625/66.51/66.5/642.25/671/67/649/6\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 2.5 & 1/6 & 2.5/6 & 6.25/6 \\ \hdashline 3 & 1/6 & 3/6 & 9/6 \\ \hdashline 4.5 & 1/6 & 4.5/6 & 20.25/6 \\ \hdashline 5 & 1/6 & 5/6 & 25/6 \\ \hdashline 6.5 & 1/6 & 6.5/6 & 42.25/6 \\ \hdashline 7 & 1/6 & 7/6 & 49/6 \\ \hdashline \end{array}


Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=4.75=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=4.75=\mu


The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=151.756(4.75)2=16.3756=σ2n(NnN1)=\dfrac{151.75}{6}-(4.75)^2=\dfrac{16.375}{6}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})σXˉ=131481.6520\sigma_{\bar{X}}=\sqrt{\dfrac{131}{48}}\approx1.6520

b. We have population values 1,4,5,9, population size N=4 and sample size n=3.

Mean of population (μ)(\mu) = 1+4+5+94=4.75\dfrac{1+4+5+9}{4}=4.75

Variance of population 


σ2=Σ(xixˉ)2n\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}


=14.0625+0.5625+0.0625+18.06254=8.1875=\dfrac{14.0625+0.5625+0.0625+18.0625}{4}=8.1875

σ=σ2=8.18752.8614\sigma=\sqrt{\sigma^2}=\sqrt{8.1875}\approx2.8614

The number of possible samples which can be drawn without replacement is NCn=4C3=4.^{N}C_n=^{4}C_3=4.

noSampleSamplemean (xˉ)11,4,510/321,4,914/331,5,915/344,5,918/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,4,5 & 10/3\\ \hdashline 2 & 1,4,9 & 14/3 \\ \hdashline 3 & 1,5,9 & 15/3 \\ \hdashline 4 & 4,5,9 & 18/3 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)10/31/410/12100/3614/31/414/12196/3615/31/415/12225/3618/31/418/12324/36\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 10/3 & 1/4 & 10/12 & 100/36 \\ \hdashline 14/3 & 1/4 & 14/12 & 196/36 \\ \hdashline 15/3 & 1/4 & 15/12 & 225/36 \\ \hdashline 18/3 & 1/4 & 18/12 & 324/36 \\ \hdashline \end{array}


Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=4.75=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=4.75=\mu


The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=84536(4.75)2=32.7536=σ2n(NnN1)=\dfrac{845}{36}-(4.75)^2=\dfrac{32.75}{36}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})σXˉ=32.75360.9538\sigma_{\bar{X}}=\sqrt{\dfrac{32.75}{36}}\approx0.9538


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS