a. We have population values 1,4,5,9, population size N=4 and sample size n=2.
Mean of population ( μ ) (\mu) ( μ ) = 1 + 4 + 5 + 9 4 = 4.75 \dfrac{1+4+5+9}{4}=4.75 4 1 + 4 + 5 + 9 = 4.75
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n} σ 2 = n Σ ( x i − x ˉ ) 2
= 14.0625 + 0.5625 + 0.0625 + 18.0625 4 = 8.1875 =\dfrac{14.0625+0.5625+0.0625+18.0625}{4}=8.1875 = 4 14.0625 + 0.5625 + 0.0625 + 18.0625 = 8.1875
σ = σ 2 = 8.1875 ≈ 2.8614 \sigma=\sqrt{\sigma^2}=\sqrt{8.1875}\approx2.8614 σ = σ 2 = 8.1875 ≈ 2.8614 The number of possible samples which can be drawn without replacement is N C n = 4 C 2 = 6. ^{N}C_n=^{4}C_2=6. N C n = 4 C 2 = 6.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 1 , 4 2.5 2 1 , 5 3 3 1 , 9 5 4 4 , 5 4.5 5 4 , 9 6.5 6 5 , 9 7 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 1,4 & 2.5\\
\hdashline
2 & 1,5 & 3 \\
\hdashline
3 & 1,9 & 5 \\
\hdashline
4 & 4,5 & 4.5 \\
\hdashline
5 & 4,9 & 6.5 \\
\hdashline
6 & 5,9 & 7 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 S am pl e 1 , 4 1 , 5 1 , 9 4 , 5 4 , 9 5 , 9 S am pl e m e an ( x ˉ ) 2.5 3 5 4.5 6.5 7
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 2.5 1 / 6 2.5 / 6 6.25 / 6 3 1 / 6 3 / 6 9 / 6 4.5 1 / 6 4.5 / 6 20.25 / 6 5 1 / 6 5 / 6 25 / 6 6.5 1 / 6 6.5 / 6 42.25 / 6 7 1 / 6 7 / 6 49 / 6 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
2.5 & 1/6 & 2.5/6 & 6.25/6 \\
\hdashline
3 & 1/6 & 3/6 & 9/6 \\
\hdashline
4.5 & 1/6 & 4.5/6 & 20.25/6 \\
\hdashline
5 & 1/6 & 5/6 & 25/6 \\
\hdashline
6.5 & 1/6 & 6.5/6 & 42.25/6 \\
\hdashline
7 & 1/6 & 7/6 & 49/6 \\
\hdashline
\end{array} X ˉ 2.5 3 4.5 5 6.5 7 f ( X ˉ ) 1/6 1/6 1/6 1/6 1/6 1/6 X ˉ f ( X ˉ ) 2.5/6 3/6 4.5/6 5/6 6.5/6 7/6 X ˉ 2 f ( X ˉ ) 6.25/6 9/6 20.25/6 25/6 42.25/6 49/6
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 4.75 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=4.75=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 4.75 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 151.75 6 − ( 4.75 ) 2 = 16.375 6 = σ 2 n ( N − n N − 1 ) =\dfrac{151.75}{6}-(4.75)^2=\dfrac{16.375}{6}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 6 151.75 − ( 4.75 ) 2 = 6 16.375 = n σ 2 ( N − 1 N − n ) σ X ˉ = 131 48 ≈ 1.6520 \sigma_{\bar{X}}=\sqrt{\dfrac{131}{48}}\approx1.6520 σ X ˉ = 48 131 ≈ 1.6520
b. We have population values 1,4,5,9, population size N=4 and sample size n=3.
Mean of population ( μ ) (\mu) ( μ ) = 1 + 4 + 5 + 9 4 = 4.75 \dfrac{1+4+5+9}{4}=4.75 4 1 + 4 + 5 + 9 = 4.75
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n} σ 2 = n Σ ( x i − x ˉ ) 2
= 14.0625 + 0.5625 + 0.0625 + 18.0625 4 = 8.1875 =\dfrac{14.0625+0.5625+0.0625+18.0625}{4}=8.1875 = 4 14.0625 + 0.5625 + 0.0625 + 18.0625 = 8.1875
σ = σ 2 = 8.1875 ≈ 2.8614 \sigma=\sqrt{\sigma^2}=\sqrt{8.1875}\approx2.8614 σ = σ 2 = 8.1875 ≈ 2.8614 The number of possible samples which can be drawn without replacement is N C n = 4 C 3 = 4. ^{N}C_n=^{4}C_3=4. N C n = 4 C 3 = 4.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 1 , 4 , 5 10 / 3 2 1 , 4 , 9 14 / 3 3 1 , 5 , 9 15 / 3 4 4 , 5 , 9 18 / 3 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 1,4,5 & 10/3\\
\hdashline
2 & 1,4,9 & 14/3 \\
\hdashline
3 & 1,5,9 & 15/3 \\
\hdashline
4 & 4,5,9 & 18/3 \\
\hdashline
\end{array} n o 1 2 3 4 S am pl e 1 , 4 , 5 1 , 4 , 9 1 , 5 , 9 4 , 5 , 9 S am pl e m e an ( x ˉ ) 10/3 14/3 15/3 18/3
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 10 / 3 1 / 4 10 / 12 100 / 36 14 / 3 1 / 4 14 / 12 196 / 36 15 / 3 1 / 4 15 / 12 225 / 36 18 / 3 1 / 4 18 / 12 324 / 36 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
10/3 & 1/4 & 10/12 & 100/36 \\
\hdashline
14/3 & 1/4 & 14/12 & 196/36 \\
\hdashline
15/3 & 1/4 & 15/12 & 225/36 \\
\hdashline
18/3 & 1/4 & 18/12 & 324/36 \\
\hdashline
\end{array} X ˉ 10/3 14/3 15/3 18/3 f ( X ˉ ) 1/4 1/4 1/4 1/4 X ˉ f ( X ˉ ) 10/12 14/12 15/12 18/12 X ˉ 2 f ( X ˉ ) 100/36 196/36 225/36 324/36
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 4.75 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=4.75=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 4.75 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 845 36 − ( 4.75 ) 2 = 32.75 36 = σ 2 n ( N − n N − 1 ) =\dfrac{845}{36}-(4.75)^2=\dfrac{32.75}{36}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 36 845 − ( 4.75 ) 2 = 36 32.75 = n σ 2 ( N − 1 N − n ) σ X ˉ = 32.75 36 ≈ 0.9538 \sigma_{\bar{X}}=\sqrt{\dfrac{32.75}{36}}\approx0.9538 σ X ˉ = 36 32.75 ≈ 0.9538
Comments