A population consists of values (1, 4, 7). Consider all possible samples of size n= 3 that can be drawn without replacement from this population.
a. Find the mean of the population.
b. Find the standard deviation of the population.
c. Find the mean of the sampling distribution of means.
d. Find the standard deviation of the sample distribution of means,
e.Construct the probability histogram of x with replacement
a. We have population values 1,4,7, population size N=3 and sample size n=3.
Mean of population "(\\mu)" = "\\dfrac{1+4+7}{3}=4"
b. Variance of population
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{6}\\approx2.4495"
c. The number of possible samples which can be drawn with replacement is "N^n=3^3=27"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 &1,1,1 & 1\\\\\n \\hdashline\n 2 & 1,1,4 & 2 \\\\\n \\hdashline\n 3 & 1,1,7 & 3\\\\\n \\hdashline\n 4 & 1,4,1 & 2\\\\\n \\hdashline\n 5 & 1,4,4 & 3 \\\\\n \\hdashline\n 6 & 1,4,7& 4 \\\\\n \\hdashline\n 7 & 1,7,1 & 3 \\\\\n \\hdashline\n 8 & 1,7,4 & 4 \\\\\n \\hdashline\n 9 & 1,7,7 & 5 \\\\\n \\hdashline\n 10 & 4,1,1 & 2\\\\\n \\hdashline\n 11 & 4,1,4 & 3 \\\\\n \\hdashline \n 12 & 4,1,7 & 4 \\\\\n \\hdashline \n13 & 4,4,1 & 3 \\\\\n \\hdashline \n 14 & 4,4,4 & 4 \\\\\n \\hdashline \n 15 & 4,4,7 & 5 \\\\\n \\hdashline \n 16 & 4,7,1 & 4 \\\\\n \\hdashline \n 17 & 4,7,4 & 5 \\\\\n \\hdashline \n 18 & 4,7,7 & 6\\\\\n \\hdashline \n 19 & 7,1,1 & 3\\\\\n \\hdashline\n 20 & 7,1,4 & 4\\\\\n \\hdashline \n 21 & 7,1,7 & 5\\\\\n \\hdashline \n 22 & 7,4,1 & 4\\\\\n \\hdashline\n 23 & 7,4,4 & 5\\\\\n \\hdashline \n 24 & 7,4,7 & 6\\\\\n \\hdashline\n 25 & 7,7,1 & 5\\\\\n \\hdashline \n 26 & 7,7,4 & 6\\\\\n \\hdashline \n 27 & 7,7,7 & 7\\\\\n \\hdashline \n\\end{array}"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=4=\\mu"d. The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{486}{27}-(4)^2=2= \\dfrac{\\sigma^2}{n}""\\sigma_{\\bar{X}}=\\sqrt{2}\\approx1.4142"
e.
Comments
Leave a comment