A. We have population values 5,6,7,8,9, population size N=5 and sample size n=2.
Mean of population ( μ ) (\mu) ( μ ) = 5 + 6 + 7 + 8 + 9 5 = 7 \dfrac{5+6+7+8+9}{5}=7 5 5 + 6 + 7 + 8 + 9 = 7
B. Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 1 5 ( 4 + 1 + 0 + 1 + 4 ) \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{5}(4+1+0+1+4) σ 2 = n Σ ( x i − x ˉ ) 2 = 5 1 ( 4 + 1 + 0 + 1 + 4 )
= 2 =2 = 2
σ = σ 2 = 2 ≈ 1.4142 \sigma=\sqrt{\sigma^2}=\sqrt{2}\approx1.4142 σ = σ 2 = 2 ≈ 1.4142
C. The number of possible samples which can be drawn without replacement is N C n = 5 C 2 = 10. ^{N}C_n=^{5}C_2=10. N C n = 5 C 2 = 10.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 5 , 6 11 / 2 2 5 , 7 12 / 2 3 5 , 8 13 / 2 4 5 , 9 14 / 2 5 6 , 7 13 / 2 6 6 , 8 14 / 2 7 6 , 9 15 / 2 8 7 , 8 15 / 2 9 7 , 9 16 / 2 10 8 , 9 17 / 2 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 5,6 & 11/2 \\
\hdashline
2 & 5,7 & 12/2 \\
\hdashline
3 & 5,8 & 13/2\\
\hdashline
4 & 5,9 & 14/2 \\
\hdashline
5 & 6,7 & 13/2 \\
\hdashline
6 & 6,8 & 14/2 \\
\hdashline
7 & 6,9 & 15/2 \\
\hdashline
8 & 7, 8 & 15/2 \\
\hdashline
9 & 7,9 & 16/2 \\
\hdashline
10 & 8,9 & 17/2 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 S am pl e 5 , 6 5 , 7 5 , 8 5 , 9 6 , 7 6 , 8 6 , 9 7 , 8 7 , 9 8 , 9 S am pl e m e an ( x ˉ ) 11/2 12/2 13/2 14/2 13/2 14/2 15/2 15/2 16/2 17/2
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 11 / 2 1 / 10 11 / 20 121 / 40 12 / 2 1 / 10 12 / 20 144 / 40 13 / 2 2 / 10 26 / 20 338 / 40 14 / 2 2 / 10 28 / 20 392 / 40 15 / 2 2 / 10 30 / 20 450 / 40 16 / 2 1 / 10 16 / 20 256 / 40 17 / 2 1 / 10 17 / 20 89 / 40 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
11/2 & 1/10 & 11/20 & 121/40 \\
\hdashline
12/2 & 1/10& 12/20 & 144/40 \\
\hdashline
13/2 & 2/10 & 26/20 & 338/40 \\
\hdashline
14/2 & 2/10 & 28/20 & 392/40 \\
\hdashline
15/2 & 2/10 & 30/20 & 450/40 \\
\hdashline
16/2 & 1/10 & 16/20 & 256/40 \\
\hdashline
17/2 & 1/10 & 17/20 & 89/40 \\
\hdashline
\end{array} X ˉ 11/2 12/2 13/2 14/2 15/2 16/2 17/2 f ( X ˉ ) 1/10 1/10 2/10 2/10 2/10 1/10 1/10 X ˉ f ( X ˉ ) 11/20 12/20 26/20 28/20 30/20 16/20 17/20 X ˉ 2 f ( X ˉ ) 121/40 144/40 338/40 392/40 450/40 256/40 89/40
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 7 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=7=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 7 = μ
D. The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 1990 40 − ( 7 ) 2 = 3 4 = σ 2 n ( N − n N − 1 ) =\dfrac{1990}{40}-(7)^2=\dfrac{3}{4}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 40 1990 − ( 7 ) 2 = 4 3 = n σ 2 ( N − 1 N − n )
σ X ˉ = 3 4 = 3 2 ≈ 0.8660 \sigma_{\bar{X}}=\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{3}}{2}\approx0.8660 σ X ˉ = 4 3 = 2 3 ≈ 0.8660 E.
μ X ˉ = E ( X ˉ ) = 7 = μ \mu_{\bar{X}}=E(\bar{X})=7=\mu μ X ˉ = E ( X ˉ ) = 7 = μ
σ 2 n ( N − n N − 1 ) = 2 2 ( 5 − 2 5 − 1 ) = 3 4 = σ X ˉ 2 \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})= \dfrac{2}{2}(\dfrac{5-2}{5-1})=\dfrac{3}{4}=\sigma^2_{\bar{X}} n σ 2 ( N − 1 N − n ) = 2 2 ( 5 − 1 5 − 2 ) = 4 3 = σ X ˉ 2
Comments