Question #334010

Random sample of n=2 are drawn from a finite population consisting of the numbers 5,6,7,8,and 9

A.Find the mean population

B.find the standard deviation of the population

C. Find the mean of the sampling distribution of the sample means.

D.FIND The standard deviation of the sampling distribution of the sample means

E.Verify the central limit theorem



1
Expert's answer
2022-04-27T14:29:59-0400

A. We have population values 5,6,7,8,9, population size N=5 and sample size n=2.

Mean of population (μ)(\mu) = 5+6+7+8+95=7\dfrac{5+6+7+8+9}{5}=7

B. Variance of population 


σ2=Σ(xixˉ)2n=15(4+1+0+1+4)\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{5}(4+1+0+1+4)


=2=2

σ=σ2=21.4142\sigma=\sqrt{\sigma^2}=\sqrt{2}\approx1.4142

C. The number of possible samples which can be drawn without replacement is NCn=5C2=10.^{N}C_n=^{5}C_2=10.

noSampleSamplemean (xˉ)15,611/225,712/235,813/245,914/256,713/266,814/276,915/287,815/297,916/2108,917/2\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 5,6 & 11/2 \\ \hdashline 2 & 5,7 & 12/2 \\ \hdashline 3 & 5,8 & 13/2\\ \hdashline 4 & 5,9 & 14/2 \\ \hdashline 5 & 6,7 & 13/2 \\ \hdashline 6 & 6,8 & 14/2 \\ \hdashline 7 & 6,9 & 15/2 \\ \hdashline 8 & 7, 8 & 15/2 \\ \hdashline 9 & 7,9 & 16/2 \\ \hdashline 10 & 8,9 & 17/2 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)11/21/1011/20121/4012/21/1012/20144/4013/22/1026/20338/4014/22/1028/20392/4015/22/1030/20450/4016/21/1016/20256/4017/21/1017/2089/40\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 11/2 & 1/10 & 11/20 & 121/40 \\ \hdashline 12/2 & 1/10& 12/20 & 144/40 \\ \hdashline 13/2 & 2/10 & 26/20 & 338/40 \\ \hdashline 14/2 & 2/10 & 28/20 & 392/40 \\ \hdashline 15/2 & 2/10 & 30/20 & 450/40 \\ \hdashline 16/2 & 1/10 & 16/20 & 256/40 \\ \hdashline 17/2 & 1/10 & 17/20 & 89/40 \\ \hdashline \end{array}


Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=7=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=7=\mu



D. The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=199040(7)2=34=σ2n(NnN1)=\dfrac{1990}{40}-(7)^2=\dfrac{3}{4}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=34=320.8660\sigma_{\bar{X}}=\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{3}}{2}\approx0.8660

E.


μXˉ=E(Xˉ)=7=μ\mu_{\bar{X}}=E(\bar{X})=7=\mu


σ2n(NnN1)=22(5251)=34=σXˉ2\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})= \dfrac{2}{2}(\dfrac{5-2}{5-1})=\dfrac{3}{4}=\sigma^2_{\bar{X}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS