A. We have population values 5,6,7,8,9, population size N=5 and sample size n=2.
Mean of population (μ) = 55+6+7+8+9=7
B. Variance of population
σ2=nΣ(xi−xˉ)2=51(4+1+0+1+4)
=2
σ=σ2=2≈1.4142
C. The number of possible samples which can be drawn without replacement is NCn=5C2=10.
no12345678910Sample5,65,75,85,96,76,86,97,87,98,9Samplemean (xˉ)11/212/213/214/213/214/215/215/216/217/2
Xˉ11/212/213/214/215/216/217/2f(Xˉ)1/101/102/102/102/101/101/10Xˉf(Xˉ)11/2012/2026/2028/2030/2016/2017/20Xˉ2f(Xˉ)121/40144/40338/40392/40450/40256/4089/40
Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=7=μ
D. The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=401990−(7)2=43=nσ2(N−1N−n)
σXˉ=43=23≈0.8660 E.
μXˉ=E(Xˉ)=7=μ
nσ2(N−1N−n)=22(5−15−2)=43=σXˉ2
Comments