Suppose that the continuous random variable x has the probability density function
f(x) = 1/2e−|x| , −∞ < x < ∞
find the m.g.f of x and use it to find E(x) and V ar(x).
"=\\dfrac{1}{2}\\displaystyle\\int_{-\\infin}^{0}e^{tx}e^xdx+\\dfrac{1}{2}\\displaystyle\\int_{0}^{\\infin}e^{tx}e^{-x}dx"
"=\\dfrac{1}{2(t+1)}[e^{(t+1)x}]\\begin{smallmatrix}\n 0 \\\\\n -\\infin\n\\end{smallmatrix}+\\dfrac{1}{2(t-1)}[e^{(t-1)x}]\\begin{smallmatrix}\n \\infin \\\\\n 0\n\\end{smallmatrix}"
"=\\dfrac{1}{2(t+1)}(1-0)+\\dfrac{1}{2(t-1)}(0-1)"
"=\\dfrac{1}{1^2-t^2}"
"M(t)=\\dfrac{1}{1^2-t^2}"
Differentiate MGF with respect to t.
Put "t=0"
Find "M''(t)"
"=2\\cdot\\dfrac{1^2+3t^2}{(1^2-t^2)^3}"
Put "t=0"
"Var(X)=E(X^2)-(E(X))^2"
"=2-(0)^2=2"
"M(t)=\\dfrac{1}{1^2-t^2}"
"E(X)=0"
"Var(X)=2"
Comments
Leave a comment