Question #334002

Suppose that the continuous random variable x has the probability density function


f(x) = 1/2e−|x| , −∞ < x < ∞


find the m.g.f of x and use it to find E(x) and V ar(x).

1
Expert's answer
2022-04-27T14:27:43-0400
M(t)=etxf(x)dxM(t)=\displaystyle\int_{-\infin}^{\infin}e^{tx}f(x)dx

=120etxexdx+120etxexdx=\dfrac{1}{2}\displaystyle\int_{-\infin}^{0}e^{tx}e^xdx+\dfrac{1}{2}\displaystyle\int_{0}^{\infin}e^{tx}e^{-x}dx

=12(t+1)[e(t+1)x]0+12(t1)[e(t1)x]0=\dfrac{1}{2(t+1)}[e^{(t+1)x}]\begin{smallmatrix} 0 \\ -\infin \end{smallmatrix}+\dfrac{1}{2(t-1)}[e^{(t-1)x}]\begin{smallmatrix} \infin \\ 0 \end{smallmatrix}

=12(t+1)(10)+12(t1)(01)=\dfrac{1}{2(t+1)}(1-0)+\dfrac{1}{2(t-1)}(0-1)

=112t2=\dfrac{1}{1^2-t^2}

M(t)=112t2M(t)=\dfrac{1}{1^2-t^2}

Differentiate MGF with respect to t.


M(t)=2t(12t2)2M'(t)=\dfrac{2t}{(1^2-t^2)^2}

Put t=0t=0


E(X)=M(0)=0E(X)=M'(0)=0

Find M(t)M''(t)


M(t)=2(12t2)22t(12t2)(2t)(12t2)4M''(t)=2\cdot\dfrac{(1^2-t^2)^2-2t(1^2-t^2)(-2t)}{(1^2-t^2)^4}

=212+3t2(12t2)3=2\cdot\dfrac{1^2+3t^2}{(1^2-t^2)^3}

Put t=0t=0


E(X2)=M(0)=2E(X^2)=M''(0)=2


Var(X)=E(X2)(E(X))2Var(X)=E(X^2)-(E(X))^2

=2(0)2=2=2-(0)^2=2

M(t)=112t2M(t)=\dfrac{1}{1^2-t^2}


E(X)=0E(X)=0


Var(X)=2Var(X)=2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS