There are five cards in a box containing the numbers 1, 3, 5, 7, and 9. A sample of size 3 is
to be drawn at a time. List all possible sample size of 3 from this population and compute the
mean and variance of the sampling distribution of the sample means.
1. We have population values 1,3,5,7,9, population size N=5 and sample size n=3.
Mean of population "(\\mu)" = "\\dfrac{1+3+5+7+9}{5}=5"
Variance of population
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{8}=2\\sqrt{2}"
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_3=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 1,3,5 & 9\/3 \\\\\n \\hdashline\n 2 & 1,3,7 & 11\/3 \\\\\n \\hdashline\n 3 & 1,3,9 & 13\/3 \\\\\n \\hdashline\n 4 & 1,5,7 & 13\/3 \\\\\n \\hdashline\n 5 & 1,5,9 & 15\/3 \\\\\n \\hdashline\n 6 & 1,7,9 & 17\/3 \\\\\n \\hdashline\n 7 & 3,5,7 & 15\/3 \\\\\n \\hdashline\n 8 & 3,5,9 & 17\/3 \\\\\n \\hdashline\n 9 & 3,7,9 & 19\/3 \\\\\n \\hdashline\n 10 & 5,7,9 & 21\/3 \\\\\n \\hdashline \n\\end{array}"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=5=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{12768}{90}-(5)^2=\\dfrac{4}{3}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{4}{3}}\\approx1.1547"
Comments
Leave a comment