Question #333836

There are five cards in a box containing the numbers 1, 3, 5, 7, and 9. A sample of size 3 is

to be drawn at a time. List all possible sample size of 3 from this population and compute the

mean and variance of the sampling distribution of the sample means.


  1. Compute the population mean.


  1. Compute the population variance.


  1. Determine the number of possible samples.


  1. List all possible samples and their corresponding means.


  1. Construct the sampling distribution of the sample means.


  1. Compute the mean of the sampling distribution of the sample means.


  1. Compute the variance of the sampling distribution of the sample means.


  1. Construct the histogram.
1
Expert's answer
2022-04-27T11:03:53-0400

1. We have population values 1,3,5,7,9, population size N=5 and sample size n=3.

Mean of population (μ)(\mu) = 1+3+5+7+95=5\dfrac{1+3+5+7+9}{5}=5

Variance of population 


σ2=Σ(xixˉ)2n=16+4+0+4+165=8\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{16+4+0+4+16}{5}=8


σ=σ2=8=22\sigma=\sqrt{\sigma^2}=\sqrt{8}=2\sqrt{2}

The number of possible samples which can be drawn without replacement is NCn=5C3=10.^{N}C_n=^{5}C_3=10.

noSampleSamplemean (xˉ)11,3,59/321,3,711/331,3,913/341,5,713/351,5,915/361,7,917/373,5,715/383,5,917/393,7,919/3105,7,921/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,3,5 & 9/3 \\ \hdashline 2 & 1,3,7 & 11/3 \\ \hdashline 3 & 1,3,9 & 13/3 \\ \hdashline 4 & 1,5,7 & 13/3 \\ \hdashline 5 & 1,5,9 & 15/3 \\ \hdashline 6 & 1,7,9 & 17/3 \\ \hdashline 7 & 3,5,7 & 15/3 \\ \hdashline 8 & 3,5,9 & 17/3 \\ \hdashline 9 & 3,7,9 & 19/3 \\ \hdashline 10 & 5,7,9 & 21/3 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)9/31/109/3081/9011/31/1011/30121/9013/32/1026/30338/9015/32/1030/30450/9017/32/1034/30578/9019/31/1019/30361/9021/31/1021/30441/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 9/3 & 1/10 & 9/30 & 81/90 \\ \hdashline 11/3 & 1/10& 11/30 & 121/90 \\ \hdashline 13/3 & 2/10 & 26/30 & 338/90 \\ \hdashline 15/3 & 2/10 & 30/30 & 450/90 \\ \hdashline 17/3 & 2/10 & 34/30 & 578/90 \\ \hdashline 19/3 & 1/10 & 19/30 & 361/90 \\ \hdashline 21/3 & 1/10 & 21/30 & 441/90 \\ \hdashline \end{array}



Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=5=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=5=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=1276890(5)2=43=σ2n(NnN1)=\dfrac{12768}{90}-(5)^2=\dfrac{4}{3}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=431.1547\sigma_{\bar{X}}=\sqrt{\dfrac{4}{3}}\approx1.1547

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS