The random variable Y = LogX has N(12,6) distribution. Find (a) The pdf of X (b) Mean and variance of X (c) P ( X ≤ 1000
1
Expert's answer
2022-04-20T09:51:04-0400
a). The pdf of X is a density of X. The variable Y=logX has a normal distribution with parameters μ=12 and σ2=6. Variable X>0, since it appears under the function log. Therefore, P(X≤0)=0. The distribution of X is similar to the log-normal distribution.
We have: P(logX≤z)=P(Y≤z)=∫−∞zg(y)dy, where g(y)=12π1e−21(6y−12)2. P(X≤s)=P(logX≤logs)=∫0log(s)g(y)dy. The derivative(due to the Leibniz’s Theorem) is: f(s)=(P(X≤s))′=g(log(s))sln(10)1=(12π)(ln(10))s1e−21(6log(s)−12)2.
Thus, the pdf of X is: f(s)=(12π)(ln(10))s1e−21(6log(s)−12)2
b). E[X]=∫0+∞(12π)(ln(10))1e−21(6log(s)−12)2ds. Make the change of variables: x=ln(s). Then, we receive: s=ex. E[X]=∫−∞+∞(12π)(ln(10))exe−21(6ln(10)x−12)2dx=e121(a2−144)∫−∞+∞ln(10)6π1e−21(6ln(10)x−aln(10))2dx,
where a=6ln(10)+3. The last integral is equal to 1 (it becomes the Gaussian integral after simple changes). Thus, we get: E[X]=e121((6ln(10)+3)2−144).
Var[X]=E[X2]−(E[X])2.
E[X2]=∫0+∞(12π)(ln(10))se−21(6log(s)−12)2ds. Make the change s=ex. We get: E[X2]=∫−∞+∞(12π)(ln(10))e2xe−21(6ln(10)x−12)2dx=e121(b2−144)∫−∞+∞ln(10)12π1e−21(6,ln(10)x−bln(10))2dx,
where b=12ln(10)+3. Thus, Var[X]=e121((12ln(10)+3)2−144)−e61((6ln(10)+3)2−144).
We received: E[X]=e121((6ln(10)+3)2−144), Var[X]=e121((12ln(10)+3)2−144)−e61((6ln(10)+3)2−144)
c). P(X≤1000)=∫01000(12π)(ln(10))s1e−21(6log(s)−12)2ds≈0.0001 (it is rounded to 4 decimal places)
Comments