Question #330807

The random variable Y = LogX has N(12,6) distribution. Find (a) The pdf of X (b) Mean and variance of X (c) P ( X ≤ 1000


1
Expert's answer
2022-04-20T09:51:04-0400

a). The pdf of XX is a density of XX. The variable Y=logXY=log\,X has a normal distribution with parameters μ=12\mu=12 and σ2=6\sigma^2=6. Variable X>0X>0, since it appears under the function loglog. Therefore, P(X0)=0P(X\leq0)=0. The distribution of XX is similar to the log-normal distribution.

We have: P(logXz)=P(Yz)=zg(y)dy,P(log\,X\leq z)=P(Y\leq z)=\int_{-\infty}^zg(y)dy, where g(y)=112πe12(y126)2g(y)=\frac{1}{\sqrt{12\pi}}e^{-\frac12\left(\frac{y-12}{\sqrt{6}}\right)^2}. P(Xs)=P(logXlogs)=0log(s)g(y)dyP(X\leq s)=P(log\,X\leq log\,s)=\int_{0}^{log(s)}g(y)dy. The derivative(due to the Leibniz’s Theorem) is: f(s)=(P(Xs))=g(log(s))1sln(10)=1(12π)(ln(10))se12(log(s)126)2f(s)=(P(X\leq s))'=g(log(s))\frac{1}{s\,\,ln(10)}=\frac{1}{(\sqrt{12\pi})\,\,(ln(10))s}e^{-\frac12\left(\frac{log(s)-12}{\sqrt{6}}\right)^2}.

Thus, the pdf of XX is: f(s)=1(12π)(ln(10))se12(log(s)126)2f(s)=\frac{1}{(\sqrt{12\pi})\,\,(ln(10))s}e^{-\frac12\left(\frac{log(s)-12}{\sqrt{6}}\right)^2}

b). E[X]=0+1(12π)(ln(10))e12(log(s)126)2ds.E[X]=\int_{0}^{+\infty}\frac{1}{(\sqrt{12\pi})\,\,(ln(10))}e^{-\frac12\left(\frac{log(s)-12}{\sqrt{6}}\right)^2}ds. Make the change of variables: x=ln(s)x=ln(s). Then, we receive: s=exs=e^x. E[X]=+ex(12π)(ln(10))e12(xln(10)126)2dx=e112(a2144)+1ln(10)6πe12(xaln(10)6ln(10))2dx,E[X]=\int_{-\infty}^{+\infty}\frac{e^x}{(\sqrt{12\pi})\,\,(ln(10))}e^{-\frac12\left(\frac{\frac{x}{ln(10)}-12}{\sqrt{6}}\right)^2}dx=e^{\frac1{12}(a^2-144)}\int_{-\infty}^{+\infty}\frac{1}{\,ln\,(10)\sqrt{6\pi}\,\,}e^{-\frac12\left({\frac{x-a\,ln(10)}{\sqrt{6}\,ln(10)}}\right)^2}dx,

where a=6ln(10)+3a=6\,ln(10)+3. The last integral is equal to 11 (it becomes the Gaussian integral after simple changes). Thus, we get: E[X]=e112((6ln(10)+3)2144)E[X]=e^{\frac1{12}((6\,ln(10)+3)^2-144)}.

Var[X]=E[X2](E[X])2Var[X]=E[X^2]-(E[X])^2.

E[X2]=0+s(12π)(ln(10))e12(log(s)126)2ds.E[X^2]=\int_{0}^{+\infty}\frac{s}{(\sqrt{12\pi})\,\,(ln(10))}e^{-\frac12\left(\frac{log(s)-12}{\sqrt{6}}\right)^2}ds. Make the change s=exs=e^x. We get: E[X2]=+e2x(12π)(ln(10))e12(xln(10)126)2dx=e112(b2144)+1ln(10)12πe12(xbln(10)6,ln(10))2dx,E[X^2]=\int_{-\infty}^{+\infty}\frac{e^{2x}}{(\sqrt{12\pi})\,\,(ln(10))}e^{-\frac12\left(\frac{\frac{x}{ln(10)}-12}{\sqrt{6}}\right)^2}dx=e^{\frac1{12}(b^2-144)}\int_{-\infty}^{+\infty}\frac{1}{\,ln\,(10)\sqrt{12\pi}\,\,}e^{-\frac12\left({\frac{x-b\,ln(10)}{\sqrt{6},ln(10)}}\right)^2}dx,

where b=12ln(10)+3.b=12\,ln(10)+3. Thus, Var[X]=e112((12ln(10)+3)2144)e16((6ln(10)+3)2144)Var[X]=e^{\frac1{12}((12\,ln(10)+3)^2-144)}-e^{\frac1{6}((6\,ln(10)+3)^2-144)}.

We received: E[X]=e112((6ln(10)+3)2144)E[X]=e^{\frac1{12}((6\,ln(10)+3)^2-144)}, Var[X]=e112((12ln(10)+3)2144)e16((6ln(10)+3)2144)Var[X]=e^{\frac1{12}((12\,ln(10)+3)^2-144)}-e^{\frac1{6}((6\,ln(10)+3)^2-144)}

c). P(X1000)=010001(12π)(ln(10))se12(log(s)126)2ds0.0001P(X\leq1000)=\int_{0}^{1000}\frac{1}{(\sqrt{12\pi})\,\,(ln(10))s}e^{-\frac12\left(\frac{log(s)-12}{\sqrt{6}}\right)^2}ds\approx0.0001 (it is rounded to 4 decimal places)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS