We have a Poisson distribution,
"\\lambda=2.7;t=1;\\lambda t=2.7\\cdot1=2.7;\\\\\nP_t(X=k)=\\cfrac{(\\lambda t)^k\\cdot e^{-\\lambda t}}{k!}=\\cfrac{2.7^k\\cdot e^{-2.7}}{k!}."
"P_{1}(X>3)=1-P(X\\le3)=\\\\\n=1-(P(X=0)+P(X=1)+\\\\+P(X=2)+P(X=3));\\\\\nP_1(X=0)=\\cfrac{2.7^0\\cdot e^{-2.7}}{0!}=0.0672;\\\\\nP_1(X=1)=\\cfrac{2.7^1\\cdot e^{-2.7}}{1!}=0.1815;\\\\\nP_1(X=2)=\\cfrac{2.7^2\\cdot e^{-2.7}}{2!}=0.2450;\\\\\nP_1(X=3)=\\cfrac{2.7^3\\cdot e^{-2.7}}{3!}=0.2205;\\\\\nP_1(X>3)=1-(0.0672+0.1815+\\\\\n+0.2450+0.2205)=0.2859."
Comments
Leave a comment