A hospital switch board receives on an average 0.9 calls/minute. Find the probability that (i) no calls in a minute, (ii) 2 or more calls/minute
Let's use Poisson's distribution P(x=k)=λke−λ/k!,P(x=k)=\lambda^ke^{-\lambda}/k!,P(x=k)=λke−λ/k!,
where λ\lambdaλ is the mean
1) P(x=0)=0.90e−0.9/0!==1/e0.9≈0.4066=40.66%2) P(x≥2)=1−P(x<2)==1−P(x=0)−P(x=1)==1−0.4066−0.91e−0.9/1!≈0.2275=22.75%1)\space P(x=0)=0.9^0e^{-0.9}/0!=\\ =1/e^{0.9}\approx0.4066=40.66\%\\ 2)\space P(x\geq2)=1-P(x<2)=\\ =1-P(x=0)-P(x=1)=\\ =1-0.4066-0.9^1e^{-0.9}/1!\approx0.2275=22.75\%1) P(x=0)=0.90e−0.9/0!==1/e0.9≈0.4066=40.66%2) P(x≥2)=1−P(x<2)==1−P(x=0)−P(x=1)==1−0.4066−0.91e−0.9/1!≈0.2275=22.75%
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments