construct a sampling distribution of the sample mean of the population consisting of the numbers 2 5 8 11 and 14 considering a sample size of 2
m(2,5)=(2+5)/2=3.5
m(2,8)=(2+8)/2=5
m(2,11)=(2+11)/2=6.5
m(2,14)=(2+14)/2=8
m(5,8)=(5+8)/2=6.5
m(5,11)=(5+11)/2=8
m(5,14)=(5+14)/2=9.5
m(8,11)=(8+11)/2=9.5
m(8,14)=(8+14)/2=11
m(11,14)=(11+14)/2=12.5
Frequency
F(3.5)=F(5)=F(11)=F(12.5)=1
F(6.5)=F(8)=F(9.5)=2
Probability
"P(x)=F(x)\/\\sum F(x)"
P(3.5)=P(5)=P(11)=P(12.5)=0.1
P(6.5)=P(8)=P(9.5)=0.2
"E(x)=\\sum P(x)x=0.1(3.5+5+11+12.5)+0.2(6.5+8+9.5)=3.2+4.8=8"
"\\sigma_x^2=\\sum P(x)x^2-(\\sum P(x)x)^2=0.1(12.25+25+121+156.25)+0.2(38.44+64+90.25)-64=31.45+38.538-64=5.988"
Comments
Leave a comment