Question #328308

Suppose the mean amount of cholesterol in eggs labeled “large” is 186 milligrams, with standard deviation 7 milligrams. Find the probability that the mean amount of cholesterol in a sample of 144 eggs will be within 1.5 milligrams of the population mean.


1
Expert's answer
2022-04-14T09:41:03-0400

We have a normal distribution, μ=186,σ=7,n=144,μ=186,σ=7,n=144,

xˉ1=1861.5=184.5,xˉ2=186+1.5=187.5.\bar{x}_1=186-1.5=184.5,\\ \bar{x}_2=186+1.5=187.5.

Let's convert it to the standard normal distribution,

zˉ=xˉμσ/n,zˉ1=184.51867/144=2.57,zˉ2=187.51867/144=2.57,P(184.5<Xˉ<187.5)=P(2.57<Zˉ<2.57)==P(Zˉ<2.57)P(Zˉ<2.57)==0.99490.0051=0.9898 (from z-table).\bar{z}=\cfrac{\bar{x}-\mu}{\sigma/\sqrt{n}},\\ \bar{z}_1=\cfrac{184.5-186}{7/\sqrt{144}}=-2.57,\\ \bar{z}_2=\cfrac{187.5-186}{7/\sqrt{144}}=2.57,\\ P(184.5<\bar{X}<187.5)=P(-2.57<\bar{Z}<2.57)=\\ =P(\bar{Z}<2.57)-P(\bar{Z}<-2.57)=\\ =0.9949-0.0051=0.9898\text{ (from z-table).}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS