The intelligence quotients (IQs) of 16 students from one area of a city showed a mean of 107 and a standard deviation of 10, while the IQs of 14 students from another area of the city showed a mean of 112 and a standard deviation of 8. What would be the ‘ t ’ value to test whether there is a significant difference between the IQs of the two groups at significance level 0.01?
a. 2.56
b. 1.45
c. 3.45
d. 2.22
"n_1=16\\\\n_2=14\\\\\\bar{x}_1=107\\\\\\bar{x}_2=112\\\\s_1=10\\\\s_2=8\\\\\\nu =\\frac{\\left( \\frac{{s_1}^2}{n_1}+\\frac{{s_2}^2}{n_2} \\right) ^2}{\\frac{1}{n_1-1}\\left( \\frac{{s_1}^2}{n_1} \\right) ^2+\\frac{1}{n_2-1}\\left( \\frac{{s_2}^2}{n_2} \\right) ^2}=\\frac{\\left( \\frac{10^2}{16}+\\frac{8^2}{14} \\right) ^2}{\\frac{1}{15}\\left( \\frac{10^2}{16} \\right) ^2+\\frac{1}{13}\\left( \\frac{8^2}{14} \\right) ^2}=27.8043\\approx 28\\\\T=\\left| \\frac{\\bar{x}_1-\\bar{x}_2}{\\sqrt{\\frac{{s_1}^2}{n_1}+\\frac{{s_2}^2}{n_2}}} \\right|=\\left| \\frac{107-112}{\\sqrt{\\frac{10^2}{16}+\\frac{8^2}{14}}} \\right|=1.51994\\\\t_{\\frac{1+\\gamma}{2},\\nu}=t_{0.995,28}=2.76\\\\None\\,\\,is\\,\\,correct"
Comments
Leave a comment