Question #328088

In testing a certain kind of truck tire over a rugged

terrain, it is found that 25% of the trucks fail to

complete the test run without a blowout. Of the next

15 trucks tested, find the probability that a) From 3

to 6 have blowouts; b) Fewer than 4 have blowouts;

C) More than 5 have blowouts.


1
Expert's answer
2022-04-15T14:36:09-0400

Let n = 15, p = 25% = 0.25, q = 1 - p = 0.75

According to the binomial distribution:

P(x=k)=Cnkpkqn−kP(x=k)=C_n^kp^kq^{n-k}


a) P(3≤x≤6)=∑k=36P(x=k)==∑k=36Cnkpkqn−k=15â‹…14â‹…131â‹…2â‹…30.2530.7512+15â‹…14â‹…13â‹…121â‹…2â‹…3â‹…40.2540.7511++15â‹…14â‹…13â‹…12â‹…111â‹…2â‹…3â‹…4â‹…50.2550.7510++15â‹…14â‹…13â‹…12â‹…11â‹…101â‹…2â‹…3â‹…4â‹…5â‹…60.2560.759==0.225199065+0.225199065++0.165145981+0.091747767==0.707291878≈70.73%a)\space P(3\leq x\leq6)=\sum_{k=3}^{6}P(x=k)=\\ =\sum_{k=3}^{6}C_n^kp^kq^{n-k}=\\ \frac{15\cdot14\cdot13}{1\cdot2\cdot3}0.25^30.75^{12}+\frac{15\cdot14\cdot13\cdot12}{1\cdot2\cdot3\cdot4}0.25^40.75^{11}+\\ +\frac{15\cdot14\cdot13\cdot12\cdot11}{1\cdot2\cdot3\cdot4\cdot5}0.25^50.75^{10}+\\ +\frac{15\cdot14\cdot13\cdot12\cdot11\cdot10}{1\cdot2\cdot3\cdot4\cdot5\cdot6}0.25^60.75^9=\\ =0.225199065+0.225199065+\\ +0.165145981+0.091747767=\\ =0.707291878\approx70.73\%


b) P(x<4)=∑k=03P(x=k)==∑k=03Cnkpkqn−k=0.2500.7515+1510.2510.7514+15â‹…141â‹…20.2520.7513++15â‹…14â‹…131â‹…2â‹…30.2530.7512==0.013363461+0.066817305++0.155907045+0.225199065==0.461286876≈46.13%b)\space P(x\lt4)=\sum_{k=0}^{3}P(x=k)=\\ =\sum_{k=0}^{3}C_n^kp^kq^{n-k}=\\ 0.25^00.75^{15}+\frac{15}{1}0.25^10.75^{14}+\frac{15\cdot14}{1\cdot2}0.25^20.75^{13}+\\ +\frac{15\cdot14\cdot13}{1\cdot2\cdot3}0.25^30.75^{12}=\\ =0.013363461+0.066817305+\\ +0.155907045+0.225199065=\\ =0.461286876\approx46.13\%


c) P(x>5)=∑k=615Cnkpkqn−k=(p+q)n−∑k=05Cnkpkqn−k=1−0.461286876−15â‹…14â‹…13â‹…121â‹…2â‹…3â‹…40.2540.7511++15â‹…14â‹…13â‹…12â‹…111â‹…2â‹…3â‹…4â‹…50.2550.7510==0.538713124−0.225199065−0.165145981==0.148368078≈14.84%c)\space P(x\gt5)=\sum_{k=6}^{15}C_n^kp^kq^{n-k}=\\ (p+q)^n-\sum_{k=0}^{5}C_n^kp^kq^{n-k}=\\ 1-0.461286876-\frac{15\cdot14\cdot13\cdot12}{1\cdot2\cdot3\cdot4}0.25^40.75^{11}+\\ +\frac{15\cdot14\cdot13\cdot12\cdot11}{1\cdot2\cdot3\cdot4\cdot5}0.25^50.75^{10}=\\ =0.538713124-0.225199065-0.165145981=\\ =0.148368078\approx 14.84\%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS