The formula to calculate a confidence interval for a population mean is as follows:
C I = x ˉ ± z ⋅ s n , CI=\bar{x}\pm z\cdot\cfrac{s}{\sqrt{n}}, C I = x ˉ ± z ⋅ n  s  , 
C I = x ˉ ± z ⋅ s n , CI=\bar{x}\pm z\cdot\cfrac{s}{\sqrt{n}}, C I = x ˉ ± z ⋅ n  s  , 
where:
x ˉ − \bar{x}- x ˉ −    sample meanz -   the chosen z-value, for a 99% confidence interval z  = 2.576s − s- s −   sample standard deviationn = 20:   sample size.
The sample mean:
x ˉ = ( 8 + 22.7 + 14.5 + 9 + 9 + 3.5 + 8 + + 11 + 7.5 + 18 + 20 + 7.5 + 9 + 10.5 + + 15 + 19 + 9 + 8.5 + 14 + 20 ) / 20 = 12.19. \bar{x}=(8+ 22.7+ 14.5+ 9+ 9+ 3.5+ 8+ \\
+11+ 7.5+ 18+20+ 7.5+ 9+ 10.5+\\
+15+ 19+ 9+ 8.5+ 14+20)/ 20=12.19. x ˉ = ( 8 + 22.7 + 14.5 + 9 + 9 + 3.5 + 8 + + 11 + 7.5 + 18 + 20 + 7.5 + 9 + 10.5 + + 15 + 19 + 9 + 8.5 + 14 + 20 ) /20 = 12.19.   
The sample variance:
s x 2 = ∑ ( x i − μ ) 2 n − 1 , s_x^2=\cfrac{\sum(x_i-\mu)^2}{n-1}, s x 2  = n − 1 ∑ ( x i  − μ ) 2  , 
s 2 = ( ( 8 − 12.19 ) 2 + ( 22.7 − 12.19 ) 2 + ( 14.5 − 12.19 ) 2 + . . . + . . . ( 14 − 12.19 ) 2 + ( 20 − 12.19 ) 2 ) / 19 = 28.54. s^2=((8-12.19)^2+(22.7-12.19)^2+(14.5-12.19)^2+...\\
+...(14-12.19)^2+(20-12.19)^2)/19=28.54. s 2 = (( 8 − 12.19 ) 2 + ( 22.7 − 12.19 ) 2 + ( 14.5 − 12.19 ) 2 + ... + ... ( 14 − 12.19 ) 2 + ( 20 − 12.19 ) 2 ) /19 = 28.54. 
The sample standard deviation:
s = 28.54 = 5.34. s=\sqrt{28.54}=5.34. s = 28.54  = 5.34.   
So,
C I = 12.19 ± 2.576 ⋅ 5.34 20 = = 12.19 ± 3.08 = ( 9.11 , 15.27 ) . CI=12.19 \pm 2.576\cdot\cfrac{5.34}{\sqrt{20}}=\\=
12.19\pm3.08=(9.11, 15.27). C I = 12.19 ± 2.576 ⋅ 20  5.34  = = 12.19 ± 3.08 = ( 9.11 , 15.27 ) . 
                             
Comments