The mean of the population:
μ = ∑ x i ⋅ P ( x i ) = = 120 ⋅ 1 5 + 130 ⋅ 1 5 + 110 ⋅ 1 5 + 125 ⋅ 1 5 + + 159 ⋅ 1 5 = 128.8. \mu=\sum x_i\cdot P(x_i)=\\
=120\cdot\cfrac{1}{5}+130\cdot\cfrac{1}{5}+110\cdot\cfrac{1}{5}+125\cdot\cfrac{1}{5}+\\
+159\cdot\cfrac{1}{5}=128.8. μ = ∑ x i ⋅ P ( x i ) = = 120 ⋅ 5 1 + 130 ⋅ 5 1 + 110 ⋅ 5 1 + 125 ⋅ 5 1 + + 159 ⋅ 5 1 = 128.8.
The mean of the sampling distribution of sample means:
μ x ˉ = μ = 128.8. \mu_{\bar x} =\mu=128.8. μ x ˉ = μ = 128.8.
The variance of the population:
σ 2 = ∑ ( x i − μ ) 2 ⋅ P ( x i ) , \sigma^2=\sum(x_i-\mu)^2\cdot P(x_i), σ 2 = ∑ ( x i − μ ) 2 ⋅ P ( x i ) ,
X − μ = { 120 − 128.8 , 130 − 128.8 , 110 − 128.8 , 125 − 128.8 , 159 − 128.8 } = = { − 8.8 , 1.2 , − 18.8 , − 3.8 , 30.2 } , X-\mu=\{120-128.8, 130-128.8, 110-128.8, \\
125-128.8,159-128.8\}=\\
=\{-8.8,1.2,-18.8,-3.8,30.2\}, X − μ = { 120 − 128.8 , 130 − 128.8 , 110 − 128.8 , 125 − 128.8 , 159 − 128.8 } = = { − 8.8 , 1.2 , − 18.8 , − 3.8 , 30.2 } ,
σ 2 = ( − 8.8 ) 2 ⋅ 1 5 + 1. 2 2 ⋅ 1 5 + ( − 18.8 ) 2 ⋅ 1 5 + + ( − 3.8 ) 2 ⋅ 1 5 + 30. 2 2 ⋅ 1 5 = 271.76. \sigma^2=(-8.8)^2\cdot \cfrac{1}{5}+1.2^2\cdot \cfrac{1}{5}+(-18.8)^2\cdot \cfrac{1}{5}+\\
+(-3.8)^2\cdot \cfrac{1}{5}+30.2^2\cdot \cfrac{1}{5}=271.76. σ 2 = ( − 8.8 ) 2 ⋅ 5 1 + 1. 2 2 ⋅ 5 1 + ( − 18.8 ) 2 ⋅ 5 1 + + ( − 3.8 ) 2 ⋅ 5 1 + 30. 2 2 ⋅ 5 1 = 271.76.
The variance of the sampling distribution of the
σ x ˉ 2 = σ 2 n = 271.76 3 = 90.59. \sigma^2_{\bar x}=\cfrac{\sigma^2}{n}=\cfrac{271.76}{3}=90.59. σ x ˉ 2 = n σ 2 = 3 271.76 = 90.59.
The standard deviation of the population:
σ = 271.76 = 16.49. \sigma=\sqrt{271.76}=16.49. σ = 271.76 = 16.49.
The Standard deviation of the sampling distribution of the sample mean:
σ x ˉ = σ n = 16.49 3 = 9.52. \sigma_{\bar x}=\cfrac{\sigma}{\sqrt n}=\cfrac{16.49}{\sqrt 3}=9.52. σ x ˉ = n σ = 3 16.49 = 9.52.
Comments