The mean of the population:
μ=∑xi⋅P(xi)==120⋅51+130⋅51+110⋅51+125⋅51++159⋅51=128.8.
The mean of the sampling distribution of sample means:
μxˉ=μ=128.8.
The variance of the population:
σ2=∑(xi−μ)2⋅P(xi),
X−μ={120−128.8,130−128.8,110−128.8,125−128.8,159−128.8}=={−8.8,1.2,−18.8,−3.8,30.2},
σ2=(−8.8)2⋅51+1.22⋅51+(−18.8)2⋅51++(−3.8)2⋅51+30.22⋅51=271.76.
The variance of the sampling distribution of the
σxˉ2=nσ2=3271.76=90.59.
The standard deviation of the population:
σ=271.76=16.49.
The Standard deviation of the sampling distribution of the sample mean:
σxˉ=nσ=316.49=9.52.
Comments