Question #326432

How many samples of size n=3 can be selected from a population with the following sizes: N=4, N=8, N=20, N=50? A population consists of the five numbers 2, 3, 6, 8 and 11. Consider samples of size 2 that can be drawn from this population.


1
Expert's answer
2022-04-11T16:11:45-0400

The number of possible samples which can be selected without replacement is

(Nn)=N!n!(Nn)!.\begin{pmatrix} N \\ n \end{pmatrix}=\cfrac{N! } {n! \cdot(N-n)! }.



(43)=4!3!1!=4.\begin{pmatrix} 4\\ 3 \end{pmatrix}=\cfrac{4! } {3! \cdot1!} =4.



(83)=8!3!5!=67823=56.\begin{pmatrix} 8\\ 3 \end{pmatrix}=\cfrac{8! } {3! \cdot5! }=\cfrac{6\cdot7\cdot8}{2\cdot3}=56 .



(203)=20!3!17!=18192023=1140.\begin{pmatrix} 20\\ 3 \end{pmatrix}=\cfrac{20! } {3! \cdot17! }=\cfrac{18\cdot19\cdot20}{2\cdot3}=1140 .



(503)=50!3!47!=48495023=19600.\begin{pmatrix} 50\\ 3 \end{pmatrix}=\cfrac{50! } {3! \cdot47! }=\cfrac{48\cdot49\cdot50}{2\cdot3}=19600 .



(52)=5!2!3!=452=10.\begin{pmatrix} 5\\ 2 \end{pmatrix}=\cfrac{5! } {2! \cdot3! }=\cfrac{4\cdot5}{2}=10.

The possible samples:

(2, 3), (2, 6), (2, 8), (2, 11), (3, 6),

(3, 8), (3, 11), (6, 8), (6, 11), (8, 11).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS