If 1.6 accidents can be expected an intersection on any given day, what is the
probability that there will be 3 accidents on any given day?
We have a Poisson distribution,
"\u03bb=1.6;\\\\\nP_t(X=k)=\\cfrac{(\\lambda t)^k\\cdot e^{-\\lambda t}}{k!}=\\cfrac{(1.6t)^k\\cdot e^{-1.6t}}{k!},\\\\\nP_1(X=3)=\\cfrac{(1.6\\cdot1)^3\\cdot e^{-1.6\\cdot1}}{3!}=0.1378."
Comments
Leave a comment