If 1.6 accidents can be expected an intersection on any given day, what is the
probability that there will be 3 accidents on any given day?
We have a Poisson distribution,
λ=1.6;Pt(X=k)=(λt)k⋅e−λtk!=(1.6t)k⋅e−1.6tk!,P1(X=3)=(1.6⋅1)3⋅e−1.6⋅13!=0.1378.λ=1.6;\\ P_t(X=k)=\cfrac{(\lambda t)^k\cdot e^{-\lambda t}}{k!}=\cfrac{(1.6t)^k\cdot e^{-1.6t}}{k!},\\ P_1(X=3)=\cfrac{(1.6\cdot1)^3\cdot e^{-1.6\cdot1}}{3!}=0.1378.λ=1.6;Pt(X=k)=k!(λt)k⋅e−λt=k!(1.6t)k⋅e−1.6t,P1(X=3)=3!(1.6⋅1)3⋅e−1.6⋅1=0.1378.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments