The annual wages X of the staffs of collage of natural sciences are normally
distributed with mean µ and standard deviation σ. Knowing that P(X > 42320) =
0.0853 and P(X < 41230) = 0.6103, find µ and σ.
"P(X>42320)=0.0853;\\\\\nP(X<42320)=P(Z<z_1)=\\\\\n=1-0.0853=0.9147;\\\\\nP(X<41230)=0.6103;\\\\\nz_1=\\cfrac{42320-\\mu}{\\sigma};\\\\\nz_2=\\cfrac{41230-\\mu}{\\sigma}."
From z-table we find "P(1.37)=0.9147,P(0.28)=0.6103."
So,
"\\begin{cases}\n \\cfrac{42320-\\mu}{\\sigma}=1.37\\\\\n\\cfrac{41230-\\mu}{\\sigma}=0.28\n\\end{cases}"
"\\begin{cases}\n42320-\\mu=1.37\\sigma\\\\\n41230-\\mu=0.28\\sigma\n\\end{cases}"
"\\begin{cases}\n\\mu=42320-1.37\\sigma\\\\\n\\mu=41230-0.28\\sigma\n\\end{cases}"
"42320-1.37\\sigma=41230-0.28\\sigma\\\\\n1.09\\sigma=1090\\\\\n\\sigma=1000\\\\\n\\mu=41230-0.28\\cdot1000=40950."
Comments
Leave a comment