m(0,4)=(0+4)/2=2
m(0,8)=(0+8)/2=4
m(0,12)=(0+12)/2=6
m(4,8)=(4+8)/2=6
m(4,12)=(4+12)/2=8
m(8,12)=(8+12)/2=10
m(0,0=(0+0)/2=0
m(4,4)=(4+4)/2=4
m(8,8)=(8+8)/2=8
m(12,12)=(12+12)/2=12
Frequency
F(2)=F(12)=F(10)=F(0)=1
F(6)=F(8)=F(4)=2
ProbabilityP ( x ) = F ( x ) / ∑ F ( x ) P(x)=F(x)/\sum F(x) P ( x ) = F ( x ) / ∑ F ( x )
P(2)=P(12)=P(10)=P(0)=1/10
P(6)=F(8)=F(4)=2/10=1/5
E ( x ) = ∑ P x = 1 / 10 ( 2 + 12 + 0 + 10 ) + 2 / 10 ( 6 + 8 + 4 ) = 2.4 + 3.6 = 6 E(x)=\sum Px=1/10(2+12+0+10)+2/10(6+8+4)=2.4+3.6=6 E ( x ) = ∑ P x = 1/10 ( 2 + 12 + 0 + 10 ) + 2/10 ( 6 + 8 + 4 ) = 2.4 + 3.6 = 6
σ 2 = ∑ P x 2 − ( ∑ P x ) 2 = 1 / 10 ( 4 + 144 + 0 + 100 ) + 2 / 10 ( 36 + 64 + 16 ) − 36 = 24.8 + 23.2 − 36 = 12 \sigma^2=\sum Px^2-(\sum Px)^2=1/10(4+144+0+100)+2/10(36+64+16)-36=24.8+23.2-36=12 σ 2 = ∑ P x 2 − ( ∑ P x ) 2 = 1/10 ( 4 + 144 + 0 + 100 ) + 2/10 ( 36 + 64 + 16 ) − 36 = 24.8 + 23.2 − 36 = 12
μ = E ( x ) \mu=E(x) μ = E ( x )
σ = ∑ ( x − μ ) 2 n − 1 = 36 + 4 + 4 + 36 3 = 5.16 \sigma=\sqrt{\frac{\sum(x-\mu)^2}{n-1}}=\sqrt{\frac{36+4+4+36}{3}}=5.16 σ = n − 1 ∑ ( x − μ ) 2 = 3 36 + 4 + 4 + 36 = 5.16
S E = σ / n = 5.16 / 4 = 2.58 SE=\sigma/\sqrt{n}=5.16/\sqrt{4}=2.58 SE = σ / n = 5.16/ 4 = 2.58
Comments