For a population 0,4,8,12, construct the sampling distribution of mean for samples of size 2 taken with replacement and the find its mean and standard error
m(0,4)=(0+4)/2=2
m(0,8)=(0+8)/2=4
m(0,12)=(0+12)/2=6
m(4,8)=(4+8)/2=6
m(4,12)=(4+12)/2=8
m(8,12)=(8+12)/2=10
m(0,0=(0+0)/2=0
m(4,4)=(4+4)/2=4
m(8,8)=(8+8)/2=8
m(12,12)=(12+12)/2=12
Frequency
F(2)=F(12)=F(10)=F(0)=1
F(6)=F(8)=F(4)=2
Probability"P(x)=F(x)\/\\sum F(x)"
P(2)=P(12)=P(10)=P(0)=1/10
P(6)=F(8)=F(4)=2/10=1/5
"E(x)=\\sum Px=1\/10(2+12+0+10)+2\/10(6+8+4)=2.4+3.6=6"
"\\sigma^2=\\sum Px^2-(\\sum Px)^2=1\/10(4+144+0+100)+2\/10(36+64+16)-36=24.8+23.2-36=12"
"\\mu=E(x)"
"\\sigma=\\sqrt{\\frac{\\sum(x-\\mu)^2}{n-1}}=\\sqrt{\\frac{36+4+4+36}{3}}=5.16"
"SE=\\sigma\/\\sqrt{n}=5.16\/\\sqrt{4}=2.58"
Comments
Leave a comment