### Theory ###
The least square linear approximation finds a and b coefficients by minimizing the sum of squares of differences between a+bxi and yi :
S=∑i=1n(a+bxi−yi)2=min⇒⇒∂a∂S=0, ∂b∂S=0∂a∂S=∑i=1n2(a+bxi−yi)==2(an+b∑i=1nxi−∑i=1nyi)=0⇒⇒a=n1(∑i=1nyi−b∑i=1nxi)∂b∂S=∑i=1n2(a+bxi−yi)xi=2(a∑i=1nxi+b∑i=1nxi2−∑i=1nxiyi)⇒⇒[insert a=n1(∑i=1nyi−b∑i=1nxi)]⇒⇒∑i=1nxi∑i=1nyi++b[n∑i=1nxi2−(∑i=1nxi)2]−n∑i=1nxiyi=0⇒b=(n∑i=1nxiyi−∑i=1nxi∑i=1nyi)//(n∑i=1nxi2−(∑i=1nxi)2)
### Solution ###
∑i=1nxi=−1+0+1+2+3=5∑i=1nxi2=1+0+1+4+9=15∑i=1nyi=0+1+2+9+29=41∑i=1nxiyi=0+0+2+18+87=107b=(5⋅107−5⋅41)/(5⋅15−25)=6.6a=(41−6.6⋅5)/5=1.6Answer:y=1.6+6.6x
Comments
Leave a comment