A. Using the t-table, give the confidence coefficients for each of the following:
a. n=21, 95% confidence
b. n=26, 99% confidence
B. Compute the population proportion interval estimate given , and the confidence level.
a. n=420;p-hat=0.61, 95% confidence
b. n=960;p-hat=0.17, 99% confidence
C. Estimate the interval for the population proportion from each of the following. Then, interpret the results.
a. x=610, n=1050, 95% confidence
b. x=734, n=1540, 99% confidence
A. a.1.721
b.2.479
B. "Confidence \\ level=p\\plusmn z\\sqrt{(pq)\/n}"
a.n=420, p=0.61, q=1-p=1-0.61=0.39, z=1.96
"Confidence \\ level=0.61 \\plusmn 1.96\\sqrt{0.61x0.39\/420}=0.61 \\plusmn 0.047"
b.n=960,,p=0.17,q=1-0.17=0.83, z=2.58
"Confidence\\ level=0.17 \\plusmn 2.58 \\sqrt{0.17x0.83\/960}=0.17 \\plusmn 0.031"
C. a. p=x/n=610/1050=0.58, q=0.42, n=1050, z=1.96
"Interval= 0.58 \\plusmn 1.96 \\sqrt{0.58x0.42\/1050}=0.58 \\plusmn 0.03"
b.p=734/1540=0.48, q=1-0.48=0.52, n=1540, z=2.58
"Interval=0.48 \\plusmn 2.58\\sqrt{0.48x0.52\/1540}=0.48 \\plusmn 0.032"
Comments
Leave a comment