Question #324246

Given a normal distribution with μ = 180 and σ = 20, find


a. The area above 230


b. The area below 215


c. The area between 185 and 225

1
Expert's answer
2022-04-06T15:53:28-0400

We have a normal distribution, μ=180,σ=20.\mu=180, \sigma=20.

Let's convert it to the standard normal distribution,

z=xμσ.z=\cfrac{x-\mu}{\sigma}.


a. z1=23018020=2.50;P(X>230)=P(Z>2.50)==1P(Z<2.50)=\text{a. } z_1=\cfrac{230-180}{20}=2.50;\\ P(X>230)=P(Z>2. 50)=\\ =1-P(Z<2.50)=

=10.9938=0.0062=1-0.9938=0.0062 ​(from z-table).


b. z2=21518020=1.75;P(X<215)=P(Z<1.75)=0.9599\text{b. } z_2=\cfrac{215-180}{20}=1.75;\\ P(X<215)=P(Z<1.75)=0.9599

 ​(from z-table).


c. z3=18518020=0.25;z4=22518020=2.25;P(185<X<225)=P(0.25<Z<2.25)=P(Z<2.25)P(Z<0.25)==0.98780.5987=0.3891.\text{c. } z_3=\cfrac{185-180}{20}=0.25;\\ z_4=\cfrac{225-180}{20}=2.25;\\ P(185<X<225)=P(0.25<Z<2.25)=\\ P(Z<2.25)-P(Z<0.25)=\\ =0.9878-0.5987=0.3891.

 ​(from z-table).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS