Given a normal distribution with μ = 180 and σ = 20, find
a. The area above 230
b. The area below 215
c. The area between 185 and 225
We have a normal distribution, "\\mu=180, \\sigma=20."
Let's convert it to the standard normal distribution,
"z=\\cfrac{x-\\mu}{\\sigma}."
"\\text{a. } z_1=\\cfrac{230-180}{20}=2.50;\\\\\nP(X>230)=P(Z>2. 50)=\\\\\n=1-P(Z<2.50)="
"=1-0.9938=0.0062" (from z-table).
"\\text{b. } z_2=\\cfrac{215-180}{20}=1.75;\\\\\nP(X<215)=P(Z<1.75)=0.9599"
(from z-table).
"\\text{c. } z_3=\\cfrac{185-180}{20}=0.25;\\\\\nz_4=\\cfrac{225-180}{20}=2.25;\\\\\nP(185<X<225)=P(0.25<Z<2.25)=\\\\\nP(Z<2.25)-P(Z<0.25)=\\\\\n=0.9878-0.5987=0.3891."
(from z-table).
Comments
Leave a comment