We have population values 3,7,11,15, population size N=4 and sample size n=2.
a. Mean of population (μ) = 43+7+11+15=9
b. Variance of population
σ2=nΣ(xi−xˉ)2=436+4+4+36=20
c.
σ=σ2=20≈4.472136
Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is NCn=4C2=6.
no123456Sample3,73,113,157,117,1511,15Samplemean (xˉ)57991113
Xˉ5791113f(Xˉ)1/61/102/61/61/6Xˉf(Xˉ)5/67/618/611/613/6Xˉ2f(Xˉ)25/649/6162/6121/6169/6
d. Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=654=9=μ
e. The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=6526−(9)2=320=nσ2(N−1N−n)
f.
σXˉ=320≈2.581989
Comments