Question #321446

A population consists of 4 number 3, 7, 11, 15 of sample size n=2 which can be drawn without replacement from the population.




a. Population mean



b. Population variance



c.population standard deviation



d. Mean of the sampling distribution of the sample means



e. Variance of the sampling distribution of the sample means



f. Standard deviation of the sampling distribution of the sample means




1
Expert's answer
2022-05-16T16:24:00-0400

We have population values 3,7,11,15, population size N=4 and sample size n=2.

a. Mean of population (μ)(\mu) = 3+7+11+154=9\dfrac{3+7+11+15}{4}=9

b. Variance of population 


σ2=Σ(xixˉ)2n=36+4+4+364=20\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{36+4+4+36}{4}=20


c.

σ=σ2=204.472136\sigma=\sqrt{\sigma^2}=\sqrt{20}\approx4.472136


Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=4C2=6.^{N}C_n=^{4}C_2=6.

noSampleSamplemean (xˉ)13,7523,11733,15947,11957,1511611,1513\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 3,7 & 5 \\ \hdashline 2 & 3,11 & 7 \\ \hdashline 3 & 3,15 & 9 \\ \hdashline 4 & 7, 11& 9 \\ \hdashline 5 & 7,15 & 11 \\ \hdashline 6 & 11,15 & 13 \\ \hdashline \end{array}





Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)51/65/625/671/107/649/692/618/6162/6111/611/6121/6131/613/6169/6\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 5 & 1/6 & 5/6 & 25/6 \\ \hdashline 7 & 1/10 & 7/6 & 49/6 \\ \hdashline 9 & 2/6 & 18/6 & 162/6 \\ \hdashline 11 & 1/6 & 11/6 & 121/6 \\ \hdashline 13 & 1/6 & 13/6 & 169/6 \\ \hdashline \end{array}



d. Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=546=9=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{54}{6}=9=\mu



e. The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=5266(9)2=203=σ2n(NnN1)=\dfrac{526}{6}-(9)^2=\dfrac{20}{3}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

f.

σXˉ=2032.581989\sigma_{\bar{X}}=\sqrt{\dfrac{20}{3}}\approx2.581989


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS