We have population values 3,7,11,15, population size N=4 and sample size n=2.
a. Mean of population ( μ ) (\mu) ( μ ) = 3 + 7 + 11 + 15 4 = 9 \dfrac{3+7+11+15}{4}=9 4 3 + 7 + 11 + 15 = 9
b. Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 36 + 4 + 4 + 36 4 = 20 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{36+4+4+36}{4}=20 σ 2 = n Σ ( x i − x ˉ ) 2 = 4 36 + 4 + 4 + 36 = 20
c.
σ = σ 2 = 20 ≈ 4.472136 \sigma=\sqrt{\sigma^2}=\sqrt{20}\approx4.472136 σ = σ 2 = 20 ≈ 4.472136
Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is N C n = 4 C 2 = 6. ^{N}C_n=^{4}C_2=6. N C n = 4 C 2 = 6.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 3 , 7 5 2 3 , 11 7 3 3 , 15 9 4 7 , 11 9 5 7 , 15 11 6 11 , 15 13 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 3,7 & 5 \\
\hdashline
2 & 3,11 & 7 \\
\hdashline
3 & 3,15 & 9 \\
\hdashline
4 & 7, 11& 9 \\
\hdashline
5 & 7,15 & 11 \\
\hdashline
6 & 11,15 & 13 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 S am pl e 3 , 7 3 , 11 3 , 15 7 , 11 7 , 15 11 , 15 S am pl e m e an ( x ˉ ) 5 7 9 9 11 13
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 5 1 / 6 5 / 6 25 / 6 7 1 / 10 7 / 6 49 / 6 9 2 / 6 18 / 6 162 / 6 11 1 / 6 11 / 6 121 / 6 13 1 / 6 13 / 6 169 / 6 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
5 & 1/6 & 5/6 & 25/6 \\
\hdashline
7 & 1/10 & 7/6 & 49/6 \\
\hdashline
9 & 2/6 & 18/6 & 162/6 \\
\hdashline
11 & 1/6 & 11/6 & 121/6 \\
\hdashline
13 & 1/6 & 13/6 & 169/6 \\
\hdashline
\end{array} X ˉ 5 7 9 11 13 f ( X ˉ ) 1/6 1/10 2/6 1/6 1/6 X ˉ f ( X ˉ ) 5/6 7/6 18/6 11/6 13/6 X ˉ 2 f ( X ˉ ) 25/6 49/6 162/6 121/6 169/6
d. Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 54 6 = 9 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{54}{6}=9=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 6 54 = 9 = μ
e. The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 526 6 − ( 9 ) 2 = 20 3 = σ 2 n ( N − n N − 1 ) =\dfrac{526}{6}-(9)^2=\dfrac{20}{3}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 6 526 − ( 9 ) 2 = 3 20 = n σ 2 ( N − 1 N − n )
f.
σ X ˉ = 20 3 ≈ 2.581989 \sigma_{\bar{X}}=\sqrt{\dfrac{20}{3}}\approx2.581989 σ X ˉ = 3 20 ≈ 2.581989
Comments