A population consists of the numbers 2, 4, 5, 9, and 10. A random sample of size 2 is
taken from the population.
1. Compute the number of samples using combination.
2. Complete the table on the right and compute the mean µ, variance
σ2 and standard deviation σ of the population.
3. Complete the table on the right and compute
the mean μx̄, variance σx̄2
, and standard
deviation σx̄ of the sampling distribution of
sample means.
We have population values 2,4,5,9,10, population size N=5 and sample size n=2.
Mean of population "(\\mu)" = "\\dfrac{2+4+5+9+10}{5}=6"
Variance of population
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{9.2}\\approx3.03315"
A. Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_2=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 2,4 & 6\/2 \\\\\n \\hdashline\n 2 & 2,5 & 7\/2 \\\\\n \\hdashline\n 3 & 2,9 & 11\/2 \\\\\n \\hdashline\n 4 & 2,10 & 12\/2 \\\\\n \\hdashline\n 5 & 4,5 & 9\/2 \\\\\n \\hdashline\n 6 & 4,9 & 13\/2 \\\\\n \\hdashline\n 7 & 4,10 & 14\/2 \\\\\n \\hdashline\n 8 & 5,9 & 14\/2 \\\\\n \\hdashline\n 9 & 5,10 & 15\/2 \\\\\n \\hdashline\n 10 & 9,10 & 19\/2 \\\\\n \\hdashline\n\\end{array}"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{120}{20}=6=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{1578}{40}-(6)^2=3.45= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{3.45}\\approx1.8574"
Comments
Leave a comment