The probability density function of a continuous random variable X is given below:
π(π₯) = {
1.25(1 β π₯
4
) , 0 < π₯ < 1
0 ππ‘βπππ€ππ π
a. Find P(0.4< X<0.9)
b. Compute the expected value and variance of X.
"a:\\\\P\\left( 0.4<X<0.9 \\right) =\\int_{0.4}^{0.9}{1.25\\left( 1-x^4 \\right) dx}=1.25\\left( 0.5-\\frac{0.9^5-0.4^5}{5} \\right) =0.479938\\\\b:\\\\EX=\\int_0^1{x\\cdot 1.25\\left( 1-x^4 \\right) dx}=1.25\\left( \\frac{1}{2}-\\frac{1}{6} \\right) =0.416667\\\\EX^2=\\int_0^1{x^2\\cdot 1.25\\left( 1-x^4 \\right) dx}=1.25\\left( \\frac{1}{3}-\\frac{1}{7} \\right) =0.238095\\\\Var\\left( X \\right) =0.238095-0.416667^2=0.0644836"
Comments
Leave a comment