The probability density function of a continuous random variable X is given below:
๐(๐ฅ) = {
1.25(1 โ ๐ฅ
4
) , 0 < ๐ฅ < 1
0 ๐๐กโ๐๐๐ค๐๐ ๐
a. Find P(0.4< X<0.9)
b. Compute the expected value and variance of X.
a:P(0.4<X<0.9)=โซ0.40.91.25(1โx4)dx=1.25(0.5โ0.95โ0.455)=0.479938b:EX=โซ01xโ 1.25(1โx4)dx=1.25(12โ16)=0.416667EX2=โซ01x2โ 1.25(1โx4)dx=1.25(13โ17)=0.238095Var(X)=0.238095โ0.4166672=0.0644836a:\\P\left( 0.4<X<0.9 \right) =\int_{0.4}^{0.9}{1.25\left( 1-x^4 \right) dx}=1.25\left( 0.5-\frac{0.9^5-0.4^5}{5} \right) =0.479938\\b:\\EX=\int_0^1{x\cdot 1.25\left( 1-x^4 \right) dx}=1.25\left( \frac{1}{2}-\frac{1}{6} \right) =0.416667\\EX^2=\int_0^1{x^2\cdot 1.25\left( 1-x^4 \right) dx}=1.25\left( \frac{1}{3}-\frac{1}{7} \right) =0.238095\\Var\left( X \right) =0.238095-0.416667^2=0.0644836a:P(0.4<X<0.9)=โซ0.40.9โ1.25(1โx4)dx=1.25(0.5โ50.95โ0.45โ)=0.479938b:EX=โซ01โxโ 1.25(1โx4)dx=1.25(21โโ61โ)=0.416667EX2=โซ01โx2โ 1.25(1โx4)dx=1.25(31โโ71โ)=0.238095Var(X)=0.238095โ0.4166672=0.0644836
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments