A coin is tossed twice. Let Z denote the number of heads on
the first toss and W , the total number of heads on the two tosses. If
the coin is unbalanced and a head has a 60% chance of occurring,
find
(a) the joint distribution of W and Z .
(b) the marginal distribution of W .
(c )the marginal distribution of Z .
(d) the probability that at least 1 head occurs.
"a:\\\\Z\\,\\,takes\\,\\,values\\,\\,0,1\\\\W\\,\\,takes\\,\\,values\\,\\,0,1,2\\\\P\\left( Z=0,W=0 \\right) =0.4\\cdot 0.4=0.16\\\\P\\left( Z=0,W=1 \\right) =0.4\\cdot 0.6=0.24\\\\P\\left( Z=1,W=1 \\right) =0.6\\cdot 0.4=0.24\\\\P\\left( Z=1,W=2 \\right) =0.6\\cdot 0.6=0.36\\\\b:\\\\P\\left( W=0 \\right) =0.4\\cdot 0.4=0.16\\\\P\\left( W=1 \\right) =0.4\\cdot 0.6+0.6\\cdot 0.4=0.48\\\\P\\left( W=2 \\right) =0.6\\cdot 0.6=0.36\\\\c:\\\\P\\left( Z=0 \\right) =0.4\\\\P\\left( Z=1 \\right) =0.6\\\\d:\\\\P\\left( W\\geqslant 1 \\right) =1-P\\left( W=0 \\right) =1-0.16=0.84"
Comments
Leave a comment